Seasonal Variation of Meteor Decay Times Observed at King Sejong Station ($62.22^{\circ}S$, $58.78^{\circ}W$), Antarctica

  • 발행 : 2010.04.15

초록

A VHF meteor radar at King Sejong Station ($162.22^{\circ}S$, $58.78^{\circ}W$), Antarctica has been observing meteors during a period of March 2007-July 2009. We analyzed the height profiles of the observed meteor decay times between 70 and 95 km by classifying strong and weak meteors according to their estimated electron line densities. The height profiles of monthly averaged decay times show a peak whose altitude varies with season in the range of 80~85 km: higher peak in southern spring and summer than in fall and winter. The higher peak during summer is consistent with colder temperatures that cause faster chemical reactions of electron removal, as effective recombination rates measured by rocket experiments. The height profiles of 15-min averaged decay times show a clear increasing trend with decreasing altitude from 95 km to the peak altitude, especially for weak meteors. This feature for weak meteors is well explained by ambipolar diffusion of meteor trails, allowing one to estimate atmospheric temperatures and pressures, as in previous studies. However, the strong meteors show not only significant scatters but also different slope of the increasing trend from 95 km to the peak altitude. Therefore, atmospheric temperature estimation from meteor decay times should be applied for weak meteors only. In this study, we present the simple model decay times to explain the height profiles of the observed decay times and discuss the additional removal processes of meteor trail electrons through the empirical recombination and by icy particles.

키워드