Abstract
Using the spectroscopic data secured with the Hamilton Echelle Spectrograph attached to a 3-m telescope at the Lick Observatory, we derived the expansion velocities from various line profiles in the 3600 $\AA$ to 10,000 $\AA$ based on the full width at half maximum and double peak of the high dispersion line profiles. The symmetrical shapes of the permitted line profiles indicate that the permitted line zone is symmetrical e.g., a spherical shell or bipolar + torus structures, which might be evidence of relatively recent ejection from the central star. Most other stronger forbidden lines might be coming from a main shell which appears as a bilateral symmetrical morphology, seen in HST and other ground-based telescopic images. The overall expansion velocities of this main shell structure that are responsible for most lines, seem to show the Hubble type expansion, i.e., accelerating shell. The faster expansion velocities of the permitted OII, NII, NIII and perhaps CII lines that do not suit to the Hubble type expansion, imply the existence of a somewhat smaller inner shell inside the outer main shell. We conclude that the nebular shell consists of a swiftly expanding inner shell and an outer normal shell excited by a central star of about 55,000K. The former compact zone appears to be responsible for the permitted C, N, and O lines while the latter extended shell appears to be responsible for H, He, and forbidden lines. We present some evidence that NGC 6833 be a member of the Galactic halo.