초등학교 수학과 교육과정에 근거한 도형영역 교수단위 추출 연구

  • 발행 : 2010.08.12

초록

사회가 변화함에 따라 수학교육과정도 변화를 거듭하고 있으며, 이러한 변화에 잘 대처하기 위해서 교사는 수학교육의 방향에 대한 깊이 있는 성찰과 함께 수학, 교육학, 심리학 등 수학교육과 관련된 학문에 대한 이해가 필요하다. 이러한 교사에 대한 시대적인 요구에 능동적으로 대처하는 방안으로 Wittmann(1984)은 수학교과의 특성상 변하지 않는 요소들을 교수단위(Teaching Units)라 하고, 수학교육을 통합시키는 개념으로 교수단위이론으로 제시하였다. 교수단위는 수학에서 가르쳐야 할 내용들을 목적, 자료, 활동, 배경 등의 4요소에 따라 작은 단위로 조직화한 것으로, 이를 통해 수학연구자나 교사는 가르쳐야 할 내용에 대한 구조적인 이해와 체계적인 조직화를 도모할 수 있게 되어 나아가 사회의 변화에 대응할 수 있게 된다. 본 연구에서는 2007년 개정 수학과 교육과정 도형영역의 교수단위를 학년별로 추출하고, 추출된 교수단위의 특징과 제목을 분석하였다. 이를 통해 교수단위가 수학교육과정연구에 어떻게 활용될 수 있는지 그 방안을 모색해 보았다. 도형영역의 교수단위(TU)는 특징과 제목에 따라 '개념알기형', '개념적용형', '관계알기형'의 세 유형으로 분류할 수 있다. 현재의 도형영역 교육과정은 대체로 개념알기형, 개념적용형, 관계알기형의 순으로 구성되어 있으며, 개념적용형이 개념알기형보다 조금 더 많다. 이는 도형영역 교육과정이 학습한 개념을 다양한 방법을 통해 여러 활동에 적용시켜 봄으로써 도형의 개념을 좀 더 명확하게 알게 되는 초등학생의 발달단계를 고려하여 구성되었음을 알 수 있다. 이러한 교수단위(TU)는 수업자가 도형학습주제에 맞게 수업을 재구성하거나 학생들의 수준에 맞는 수준별 맞춤자료를 제작할 때 유용하게 활용될 수 있으며, 더 나아가 수학연구자들이 새로운 교육과정을 수립하고자 할 때 기초자료로 활용될 수도 있을 것이다. 교수단위는 고정불변의 것이 아니고 계속 보완되고 진화될 수 있는 모델이다. 따라서 앞으로도 많은 수학연구자나 현장교사의 참여로 교수단위가 보다 더 체계적이고 조직적으로 연구되어야 한다. 또한 추출된 교수단위를 교사나 학생들이 보다 편리하게 활용할 수 있도록 컴퓨터용 소프트웨어로 개발하려는 후속 연구가 필요하다.

키워드