
GPGPU 기반의 효율적인 카메라 ISP 구현

박종태*, Beorn Facchini*, 홍진건*, Bernd Burgstaller*
*연세대학교 컴퓨터과학과

e-mail : {jongtae.park, beorn, ginug, bburg}@cs.yonsei.ac.kr

Implementing Efficient Camera ISP Filters on GPGPUs Using
OpenCL

Jongtae Park*, Beron Facchini*, Jingun Hong*, Bernd Burgstaller*
*Dept. of Computer Science, Yonsei University

요 약

General Purpose Graphic Processing Unit (GPGPU) computing is a technique that utilizes the high-
performance many-core processors of high-end graphic cards for general-purpose computations such as
3D graphics, video/image processing, computer vision, scientific computing, HPC and many more. GPGPUs offer
a vast amount of raw computing power, but programming is extremely challenging because of hardware
idiosyncrasies. The open computing language (OpenCL) has been proposed as a vendor-independent GPGPU
programming interface. OpenCL is very close to the hardware and thus does little to increase GPGPU
programmability. In this paper we present how a set of digital camera image signal processing (ISP) filters can be
realized efficiently on GPGPUs using OpenCL. Although we found ISP filters to be memory-bound computations,
our GPGPU implementations achieve speedups of up to a factor of 64.8 over their sequential counterparts. On
GPGPUs, our proposed optimizations achieved speedups between 145% and 275% over their baseline GPGPU
implementations. Our experiments have been conducted on a Geforce GTX 275; because of OpenCL we expect
our optimizations to be applicable to other architectures as well.

1. Introduction

Researchers and developers alike have become interested
in accelerators for extremely demanding computations. As a
result, GPUs, which have been originally intended for 3D
graphics, have recently acquired general purpose computing
capabilities to exploit the abundant amount of parallelism
offered by these architectures. This trend is collectively
known as GPGPU computing [5]. In response to increasing
numbers of vendor-specific platforms and programming
interfaces, OpenCL, has been proposed as an open standard
for GPGPU computing. Digital image processing is an
application domain with an abundant amount of
parallelism: algorithms often apply to single pixels or sub-
parts of an image, with no (or little) dependencies between
them. Nevertheless, because of GPGPU hardware
idiosyncrasies, achieving high performance for such
algorithms is still a challenging task. In this paper we
investigated how camera ISP filters can be implemented on
NVIDIA’s CUDA architecture using OpenCL. Our work
shows how performance bottlenecks with ISP algorithms can
be avoided and how programming techniques for GPGPUs
can be utilized specifically for image processing. The
remainder of the paper is structured as follows: in Section 2
we survey related work. In Section 3 we introduce our filter
algorithms and the GPGPU-specific optimizations. In
Section 4 we present our experimental results. We draw our
conclusions in Section 5.

2. Related Work

2D image processing has been achieved through a
restricted form of 3D graphics processing since GPUs have
become programmable. Early approaches required
knowledge of GPU programming like Direct3D or OpenGL
in which each pixel can run one or more small programs
called vertex shaders and pixel shaders. Mcguire’s
demosaicing and median filters show reasonable
performance on GPUs with this approach [4, 5].
In this paper we approach image processing as a form of
GPGPU computing based on OpenCL. OpenCL is geared
towards general-purpose computing and it is platform-
independent, which will provide a straight-forward mapping
(i.e., re-compile) of code onto other types of parallel
accelerators such as the IBM Cell Broadband Engine or
DSPs.

3. Camera ISP Filters

Many different image filter algorithms exist, but very few
are actually required for camera ISP pipelines. We focused
on common filters, including filters from the post-ISP
pipeline, for which we were able to derive optimization
methodologies that will apply to the majority of image filter
algorithms. Our implementations comprise five kinds of
filters: color reconstruction (a.k.a. demosaicing), color model
conversion, noise reduction, image convolution and pixel
blending. Although pixel blending is not an essential
component of ISP pipelines, it is a computationally intensive

- 1784 -

제34회 한국정보처리학회 추계학술대회 논문집 제17권 2호 (2010. 11)

filter. Mapping such a filter on a GPGPU can yield
reasonable frame rates.

3.1 Work-group Size

The work-group size is a crucial factor that determines
how effectively the GPGPU CUs are utilized. Note that this
factor depends on how many active threads and work-groups
a CU on a particular GPGPU can have. In other words, it
depends on the hardware specification. Moreover, even if we
find best block size, we cannot use it when an input image is
not divisible by that size. It is therefore hard to make a
decision of a proper block size. Nonetheless, we could
achieve reasonable performance by following a basic idea in
which we schedule threads as many as possible onto CU. In
this paper, we employed a 16x20 work-group which results
in 93.8% utilization of feasible threads of NVIDIA GTX275
CUs (total work-groups: 3, total scheduled threads: 960, the
maximum number of active threads per CU: 1024). We could
attain speedups over arbitrary work-group sizes in all filters
using this size and it works best in our loading scheme (see
below). A block size divisible by 32 usually shows good
performance because CUDA schedules 32 threads (called
warp) at once.

3.2 Utilizing Local Memory

It is common with image processing algorithms that the
computation for a given pixel refers to neighboring pixels
(e.g., with mask-based algorithms like thresholding or
averaging, see also Fig. 1(b)). Overall, such algorithms read
each pixel value several times, which suggests to load pixel
data from global memory into local memory; local memory
is a CU-specific low-latency memory [2] with about 100x
lower memory latency than global memory. The more
neighboring pixels on the global memory we refer to, the
bigger performance degradation we experience, especially
with large-sized masks. It is therefore important to utilize
local memory to hide the latency to global memory for
performance gain. For this, the basic idea is that we load
work-items from the global memory and store these into the
local memory only once. After that, we never refer to work-
items that reside in global memory during the filter
invocation. Instead, we refer to the work-items on the local
memory as many times as we want. Nevertheless, It will
barely causes the performance degradation thanks to the
lower memory latency, as mentioned above.

3.3 Loading Scheme for Global Work-items

A straight-forward way to load data into local memory is
to have each thread load one data-item. This scheme is
optimal, but it is not applicable with filters that involve
aprons, e.g., with convolution filters, because we need to
load the pixels in the apron region as well. Fig. 1(a) depicts a
loading scheme of apron pixels (gray area) by threads T1 ~ T3
and Fig. 1(b) depicts thread T1 applying a 3x3 mask (purple-
colored) on the input pixel marked ‘T1’. A naïve way to load
apron pixels is to have one thread of each work-group load
all work-items into local memory. We define this as a one
thread loading scheme. But it obviously introduces a
bottleneck that makes all other threads wait for the ‘loading
thread’ to complete memory transfers of apron pixels.

 (a) (b)

(Figure 1) Loading work-items and applying a 3x3 mask

An obvious improvement will be to have multiple threads
of a workgroup share the loading of apron pixels. As
indicated in Fig. 1(a), a loading scheme that assigns each
apron pixel to a thread needs to be devised. This loading
scheme needs to balance the load among threads equally, and
it needs to minimize executions of diverging branches:
branch divergence occurs if threads of the same warp take
different branches (with control-flow statements, e.g., if,
switch, for, while). If this happens, the different execution
paths must be serialized, increasing the total number of
instructions executed for this warp. When all the different
execution paths have completed, the threads of the warp
continue in data-parallel way along a single execution path.
In this paper, we propose the following loading scheme that
shows a 55.8 speedup over the one thread loading scheme
(for a 9x9 mask).

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

x_offset ← globalThreadID.x – (localThreadID.x + filterMaskSize)
y_offset ← globalThreadID.y – (localThreadID.y + filterMaskSize)
y ← localThreadID.y * 2
if y < localMemoryHeight then
 x ← localThreadID.x

l_offset ← localMemWidth * y + x
g_offset ← imageWidth * (y + y_offset) + x + x_offset

 localMem[l_offset] ← globalMem[g_offset]
 localMem[l_offset + localMemoryWidth] ← globalMem[g_offset + imageWidth]
 if x < maskSize * 2 then

lhsOffset ← l_offset + workGroupWidth
 rhsOffset ← g_offset + workGroupWidth

 localMem[lhsOffset] ← globalMem[rhsOffset]
 lhsOffset ← l_offset + localMemoryWidth + workGroupWidth
 rhsOffset ← g_offset + imageWidth + workGroupWidth
 localMem[lhsOffset] ← globalMem[rhsOffset]
 end if
end if

(Figure 2) Pseudo code for proposed loading scheme

In our loading scheme, each row of threads loads two
pixel-rows from the global memory and some of threads in a
row also participate in loading apron pixels. Lines 11 ~ 19
take into account this operation. Although some rows in a
work-group are idle (e.g., 4 out of 16 for 16x20 work-
groups) this scheme is much faster than the one thread
loading scheme and even two times faster than the loading
scheme recommended by NVIDIA in the CUDA 3.0 toolkit,
because of the row by row loading scheme without concern
for top/bottom apron pixels. The number of diverging
branches is 1512 for our loading scheme and 4344 for
NVIDIA’s loading scheme. Note that our proposed loading
scheme can be applied to any mask size as long as the width
and height of a work-group are at least two times bigger than
the radius of a mask. In contrast, NVIDIA’s proposed loading
scheme only supports a mask size of 3x3 pixels.

- 1785 -

제34회 한국정보처리학회 추계학술대회 논문집 제17권 2호 (2010. 11)

3.4 Padding Local Memory

Local memory consists of memory blocks called banks,
each of which has 32 bit words. If N memory requests from
executing threads access the same memory bank, a bank
conflict will arise, increasing N times the latency of local
memory access. In the RGB color model 24 bits color arrays
cause bank conflicts as depicted in Fig. 3(a).

R G B R G B R G

↑ ↖
Thread 0 Thread1

(a) Thread 0 and Thread 1
access the same bank

R G B 0 R G B 0

↑ ↑
Thread 0 Thread1

(b) Thread 0 and Thread 1
access different banks

(Figure 3) Memory bank accesses of thread 0 and 1

To avoid this, we padded 8 bits at the end of each pixel so
that a thread’s request for a pixel’s values (R,G,B) is
restricted to a single discrete memory bank. Fig. 3(b) shows
how we pad a RGB array with 8 bits. Padding improved
performance of RGB-based filters by 2% - 8%.

3.5 Predicated Execution

One feasible way to reduce the number of branches is to
use predicated instructions. With predicated instructions the
controlling condition (e.g., from an if statement) is attached
to the instruction itself. At run-time, the instruction is
scheduled for execution, but only executed if the condition is
true. This is called predicated execution [2]. If we write a
program in a way such that conditional constructs have two
branches, then the OpenCL compiler schedules both
branches using predicated instructions (if the number of
statements controlled by the condition is below a given
threshold).

1:
2:
3:
4:
5:
6:

offset ← width * y + x
if x > 1000 then

g_out[offset] ← 0
else then

g_out[offset] ← 255
end if

(a) a non-optimized conditional
construct example

1:
2:
3:
4:
5:
6:
7:

offset ← width * y + x
if x > 1000 then

out ← 0
else then

out ← 255
end if
g_out[offset] ← out

(b) an optimized conditional
construct example

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:

coord ← (x, y) mod (2, 2)
if coord.y = 1 then

if coord.x = 1 then
out ← mask[0];

else then
out ← mask[1]

end if
else if coord.y = 0 then

if coord.x = 1 then
out ← mask[2];

else then
out ← mask[3]

end if
end if
(c) optimized conditional
constructs of demosaicing

(Figure 4) non-optimized/optimized conditional constructs

We now consider applying predicated execution to
demosaicing. Based on the coordinates (x, y), there are four
possible conditions in the Bayer-patterned input image [4],
see also Fig. 4(c). A combination of “if”, “else if” and “else”
or “switch ~ case” statements can be used for a thread to
decide which condition applies. Let’s assume that we use a
combination of one ”if”, two “else if” and one “else” for
demosaicing. In this case, we will have at least two branch

points and one convergence point. Because the computation
of the target address for the indirect memory address (lines 3
and 5) requires enough instructions to exceed the compiler’s
threshold for branch predication, a branch is introduced.
(Note that the threshold for the number of instructions for
predicated execution is 3 or 6 in CUDA [2].) We can stay
below the threshold by introducing a temporary variable for
g_out, which doesn’t include address calculations for the
indirect memory access. The optimized code that uses
predicated execution is depicted in Fig. 4(b). The code for all
four cases is shown in Fig. 4(c). Note that, although we
removed just one branch by this schedule, we could acquire a
29% performance increase by this optimization.

For median filter, sorting algorithms can be commonly
used for median filtering and we chose insert sort as the
baseline. To apply predicated execution, a proper approach is
Paeth’s algorithm [6] in which the minimum and the
maximum of the first six elements in an array are determined
and eliminated without applying a loop. Then the 7th, 8th,
9th elements are moved to the empty space and repeated
previous actions until the median is determined (3x3 mask).
We can change all comparisons in Paeth’s median filter
algorithm into two-directional conditional constructs similar
to what McGuire showed in [4, 5], because only comparisons
of two values and swap instructions are involved in this
algorithm. It means we can also apply predicated execution
to the median filtering easily, eliminating all possible
branches. With our predicated execution the number of
diverging branches was reduced from 7866 to 3832 for the
demosaicing filter (by 51%), and from 73679 to 2059 for
median filter (by 97%).

3.6 Pinned Memory

Host memory paged out to the hard-disk can affect
program performance due to lower memory bandwidth.
However, OpenCL provides an API to lock data into the
host’s memory (pinned memory or page-locked memory [1]).
Therefore, pinned memory use is useful only when data is
being transferred between the host and the device. However,
it should be noted that pinned memory might cause
performance degradation of other programs running on the
machine as there would be a higher chance for those
programs to be paged-out from physical memory.

4. Experimental Results

To evaluate our proposed optimizations, we implemented
filters using the CUDA SDK 3.0 ToolKit on CentOS 5.5 and
a Geforce GTX 275 equipped with 30 CUs and 1 GB of
device memory. In addition to GPGPU filters, we
implemented the same filters for single thread execution, on
an Intel quad-core i5 750 2.67MHz to determine the
speedups of parallelized filters over sequential execution. In
the following, all execution times are given in milliseconds,
and the resolution of input images for Sections 4.1 and 4.2 is
1920x1080, full HD. To test the median filter, we added 10%
of salt-and pepper noise before running the filter but the time
of adding noise is not added to the actual time for
measurement.

- 1786 -

제34회 한국정보처리학회 추계학술대회 논문집 제17권 2호 (2010. 11)

<Table 1> Cumulative results from left to right column after a series of optimizations (*:Maximum-optimized result)

Global
4x4

Global
16x20

Global
16x20

Local
16x20

Local Pad.
16x20

Local Pad.
16x20 Filter

Type
CPU

Sequential
Baseline Best Size Pinned Local Mem. Padding Predicated Exec.

CPU/GPU
Speedup

Base/Opt.
Speedup

Blur 3x3 147.4 8.00 6.75 6.24 5.94 *5.52 N/A 26.7 1.45
Sharp 3x3 150 8.00 6.78 6.27 5.98 *5.57 N/A 26.9 1.44

Median 3x3 666 21.38 15.86 15.34 15.02 14.52 *10.33 64.8 2.06
Demosaicing 5x5 117.92 13.53 11.24 7.95 6.66 6.46 *4.92 23.9 2.75

Blur 5x5 332.4 16.20s 13.21 12.68 9.46 *8.88 N/A 37.4 1.82
Sharp 5x5 333.2 16.22 13.37 12.82 9.49 *8.89 N/A 37.5 1.82

Median 5x5 2700 119.75 81.80 81.26 79.07 78.23 *44.45 61.1 2.69
Oil 9x9 2325 237.5 240.6 240.1 211.9 *167.5 N/A 13.9 1.42

4.1 Comparison of Loading Schemes

Table 2 shows the execution times for four approaches of
loading all pixels in the 16x20 work-group into local
memory. “Self” is the simplest as each thread loads one
corresponding global memory block. “One thread” means
that only one thread loads all work-items into local memory
and “NVIDIA” means the loading scheme used in the
sample of NVIDIA CUDA SDK 3.0 Toolkit. You can see
how significantly idle threads caused by one thread scheme
deteriorate the loading time.

<Table2> four approaches of loading global memory
into local memory

Mask size Self Our scheme NVIDIA One thread

3x3 3.47 3.74 4.26 22.49

5x5 3.47 3.74 N/A 26.49

7x7 3.47 3.81 N/A 30.88

9x9 3.47 3.81 N/A 35.64

All loading schemes here include global memory access

and it always takes 3.23 ms regardless of mask size.
Therefore, you can think that our scheme is actually two
times faster than NVIDIA scheme if we subtract 3.23 ms
from measured times

4.2 Cumulative Results after Optimizations

 Table 1 presents cumulative results after a series of
optimizations proposed in this paper. The second column
shows the execution times of image filter programs for
sequential execution and the third column indicates the
baseline implementation for our optimizations. Actual
execution times after each optimization begin from 4th
column towards the right and indicating proper block size,
pinned memory use, local memory use, padding RGB and
predicated execution, respectively. The 8th column shows
speedups over all optimizations. We achieved from 1.42 to
2.75 speedups over the GPGPU baseline and a maximum
speedup of 64.8 over the sequential case. Note that filters
with bigger mask size show more performance gain from
local memory use except for the median filter. The reason
for low performance gains of median can be explained by
the fact that the median filter stores again work-items into
an array for sorting them. But this overhead can be naturally
amortized by predicated execution as can be inferred from
the 8th column.

4.3 Consistency of Scalability for Work-items

Many-core accelerators such as GPGPU should show
consistent performance results based on the number of input
work-items in terms of scalability. Thus we conducted
experiments to verify the consistency of scalability for the
number of work-items which is equal to the number of
pixels in the input image. As you can see at Table 3, Full-
optimized median filter still show the same scalability
before being optimized. Speedup here means the speedup
over the previous smaller input image.

<Table 3> Execution time for the number of work-items (resolutions)

 for median filter with 3x3 mask

 1920x1080 1280x720 720x480 640x480

Baseline 21.38 9.72 3.87 3.48

Speedup over prev. 2.19 2.51 1.11 -

Full-optimized 10.33 4.58 1.80 1.60

Speedup over prev. 2.25 2.54 1.12 -

5. Conclusion

We have presented a set of optimizations for camera ISP
filters, taking various hardware features of GPGPUs into
account. Our filter algorithms have been implemented in
OpenCL, which is a vendor-independent programming
interface for GPGPUs. We expect our algorithms to show
similar results when realized on hand-held embedded
devices such as tablet PCs and smart-phones.

References

[1] OpenCL Overview. URL http://www.khronos.org/
developers/library/overview/opencl_overview.pdf

[2] NVIDIA OpenCL Programming Guide. URL
http://www.nvidia.com/OpenCL

[3] M. McGuire. A fast, small-radius gpu median lter. In ShaderX6,
2008.

[4] M. McGuire. Efficient, high-quality bayer demosaic Fltering on
GPUs. J. Graphics Tools, 13(4):1-16, 2008.

[5] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger,
A. E. Lefohn, and T. J. Purcell. A survey of general-purpose
computation on graphics hardware. Computer Graphics Forum,
26(1):80-113, 2007.

[6] A. W. Paeth. Median finding on a 3x3 Grid. In Andrew
Glassner, editor, Graphic Gems, pages 171-175. Academic Press,
Boston, 1990.

- 1787 -

제34회 한국정보처리학회 추계학술대회 논문집 제17권 2호 (2010. 11)

