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요       약 

General Purpose Graphic Processing Unit (GPGPU) computing is a technique that utilizes the high-
performance many-core processors of high-end graphic cards for general-purpose computations such as 
3D graphics, video/image processing, computer vision, scientific computing, HPC and many more. GPGPUs offer 
a vast amount of raw computing power, but programming is extremely challenging because of hardware 
idiosyncrasies. The open computing language (OpenCL) has been proposed as a vendor-independent GPGPU 
programming interface. OpenCL is very close to the hardware and thus does little to increase GPGPU 
programmability. In this paper we present how a set of digital camera image signal processing (ISP) filters can be 
realized efficiently on GPGPUs using OpenCL. Although we found ISP filters to be memory-bound computations, 
our GPGPU implementations achieve speedups of up to a factor of 64.8 over their sequential counterparts. On 
GPGPUs, our proposed optimizations achieved speedups between 145% and 275% over their baseline GPGPU 
implementations. Our experiments have been conducted on a Geforce GTX 275; because of OpenCL we expect 
our optimizations to be applicable to other architectures as well. 

 

1. Introduction 

Researchers and developers alike have become interested 
in accelerators for extremely demanding computations. As a 
result, GPUs, which have been originally intended for 3D 
graphics, have recently acquired general purpose computing 
capabilities to exploit the abundant amount of parallelism 
offered by these architectures. This trend is collectively 
known as GPGPU computing [5]. In response to increasing 
numbers of vendor-specific platforms and programming 
interfaces, OpenCL, has been proposed as an open standard 
for GPGPU computing. Digital image processing is an 
application domain with an abundant amount of  
parallelism: algorithms often apply to single pixels or sub-
parts of an image, with no (or little) dependencies between 
them. Nevertheless, because of GPGPU hardware 
idiosyncrasies, achieving high performance for such 
algorithms is still a challenging task. In this paper we 
investigated how camera ISP filters can be implemented on 
NVIDIA’s CUDA architecture using OpenCL. Our work 
shows how performance bottlenecks with ISP algorithms can 
be avoided and how programming techniques for GPGPUs 
can be utilized specifically for image processing. The 
remainder of the paper is structured as follows: in Section 2 
we survey related work. In Section 3 we introduce our filter 
algorithms and the GPGPU-specific optimizations. In 
Section 4 we present our experimental results. We draw our 
conclusions in Section 5. 

 

2. Related Work 

2D image processing has been achieved through a 
restricted form of 3D graphics processing since GPUs have 
become programmable. Early approaches required 
knowledge of GPU programming like Direct3D or OpenGL 
in which each pixel can run one or more small programs 
called vertex shaders and pixel shaders. Mcguire’s 
demosaicing and median filters show reasonable 
performance on GPUs with this approach [4, 5].  
In this paper we approach image processing as a form of 
GPGPU computing based on OpenCL. OpenCL is geared 
towards general-purpose computing and it is platform-
independent, which will provide a straight-forward mapping 
(i.e., re-compile) of code onto other types of parallel 
accelerators such as the IBM Cell Broadband Engine or 
DSPs. 

 
3. Camera ISP Filters 

Many different image filter algorithms exist, but very few 
are actually required for camera ISP pipelines. We focused 
on common filters, including filters from the post-ISP 
pipeline, for which we were able to derive optimization 
methodologies that will apply to the majority of image filter 
algorithms. Our implementations comprise five kinds of 
filters: color reconstruction (a.k.a. demosaicing), color model 
conversion, noise reduction, image convolution and pixel 
blending. Although pixel blending is not an essential 
component of ISP pipelines, it is a computationally intensive 
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filter. Mapping such a filter on a GPGPU can yield 
reasonable frame rates. 

 
3.1 Work-group Size 

The work-group size is a crucial factor that determines 
how effectively the GPGPU CUs are utilized. Note that this 
factor depends on how many active threads and work-groups 
a CU on a particular GPGPU can have. In other words, it 
depends on the hardware specification. Moreover, even if we 
find best block size, we cannot use it when an input image is 
not divisible by that size. It is therefore hard to make a 
decision of a proper block size. Nonetheless, we could 
achieve reasonable performance by following a basic idea in 
which we schedule threads as many as possible onto CU. In 
this paper, we employed a 16x20 work-group which results 
in 93.8% utilization of feasible threads of NVIDIA GTX275 
CUs (total work-groups: 3, total scheduled threads: 960, the 
maximum number of active threads per CU: 1024). We could 
attain speedups over arbitrary work-group sizes in all filters 
using this size and it works best in our loading scheme (see 
below). A block size divisible by 32 usually shows good 
performance because CUDA schedules 32 threads (called 
warp) at once. 

 
3.2 Utilizing Local Memory 

It is common with image processing algorithms that the 
computation for a given pixel refers to neighboring pixels 
(e.g., with mask-based algorithms like thresholding or 
averaging, see also Fig. 1(b)). Overall, such algorithms read 
each pixel value several times, which suggests to load pixel 
data from global memory into local memory; local memory 
is a CU-specific low-latency memory [2] with about 100x 
lower memory latency than global memory. The more 
neighboring pixels on the global memory we refer to, the 
bigger performance degradation we experience, especially 
with large-sized masks. It is therefore important to utilize 
local memory to hide the latency to global memory for 
performance gain. For this, the basic idea is that we load 
work-items from the global memory and store these into the 
local memory only once. After that, we never refer to work-
items that reside in global memory during the filter 
invocation. Instead, we refer to the work-items on the local 
memory as many times as we want. Nevertheless, It will 
barely causes the performance degradation thanks to the 
lower memory latency, as mentioned above.  

 
3.3 Loading Scheme for Global Work-items 

A straight-forward way to load data into local memory is 
to have each thread load one data-item. This scheme is 
optimal, but it is not applicable with filters that involve 
aprons, e.g., with convolution filters, because we need to 
load the pixels in the apron region as well. Fig. 1(a) depicts a 
loading scheme of apron pixels (gray area) by threads T1 ~ T3 
and Fig. 1(b) depicts thread T1 applying a 3x3 mask (purple-
colored) on the input pixel marked ‘T1’. A naïve way to load 
apron pixels is to have one thread of each work-group load 
all work-items into local memory. We define this as a one 
thread loading scheme. But it obviously introduces a 
bottleneck that makes all other threads wait for the ‘loading 
thread’ to complete memory transfers of apron pixels. 

 
              (a)                            (b) 

(Figure 1) Loading work-items and applying a 3x3 mask 

An obvious improvement will be to have multiple threads 
of a workgroup share the loading of apron pixels. As 
indicated in Fig. 1(a), a loading scheme that assigns each 
apron pixel to a thread needs to be devised. This loading 
scheme needs to balance the load among threads equally, and 
it needs to minimize executions of diverging branches: 
branch divergence occurs if threads of the same warp take 
different branches (with control-flow statements, e.g., if, 
switch, for, while). If this happens, the different execution 
paths must be serialized, increasing the total number of 
instructions executed for this warp. When all the different 
execution paths have completed, the threads of the warp 
continue in data-parallel way along a single execution path. 
In this paper, we propose the following loading scheme that 
shows a 55.8 speedup over the one thread loading scheme 
(for a 9x9 mask). 
 

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

x_offset ← globalThreadID.x – (localThreadID.x + filterMaskSize) 
y_offset ← globalThreadID.y – (localThreadID.y + filterMaskSize) 
y ← localThreadID.y * 2 
if y < localMemoryHeight then 
   x ← localThreadID.x 

l_offset ← localMemWidth * y + x  
g_offset ← imageWidth * (y + y_offset) + x + x_offset 

   localMem[l_offset] ← globalMem[g_offset] 
    localMem[l_offset + localMemoryWidth] ← globalMem[g_offset + imageWidth]
    if x < maskSize * 2 then 

lhsOffset ← l_offset + workGroupWidth 
      rhsOffset ← g_offset + workGroupWidth 

       localMem[lhsOffset] ← globalMem[rhsOffset] 
       lhsOffset ← l_offset + localMemoryWidth + workGroupWidth 
       rhsOffset ← g_offset + imageWidth + workGroupWidth 
       localMem[lhsOffset] ← globalMem[rhsOffset] 
   end if 
end if 

(Figure 2)  Pseudo code for proposed loading scheme  

In our loading scheme, each row of threads loads two 
pixel-rows from the global memory and some of threads in a 
row also participate in loading apron pixels. Lines 11 ~ 19 
take into account this operation. Although some rows in a 
work-group are idle (e.g., 4 out of 16 for 16x20 work-
groups) this scheme is much faster than the one thread 
loading scheme and even two times faster than the loading 
scheme recommended by NVIDIA in the CUDA 3.0 toolkit, 
because of the row by row loading scheme without concern 
for top/bottom apron pixels. The number of diverging 
branches is 1512 for our loading scheme and 4344 for 
NVIDIA’s loading scheme. Note that our proposed loading 
scheme can be applied to any mask size as long as the width 
and height of a work-group are at least two times bigger than 
the radius of a mask. In contrast, NVIDIA’s proposed loading 
scheme only supports a mask size of 3x3 pixels. 
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3.4 Padding Local Memory 

Local memory consists of memory blocks called banks, 
each of which has 32 bit words. If N memory requests from 
executing threads access the same memory bank, a bank 
conflict will arise, increasing N times the latency of local 
memory access. In the RGB color model 24 bits color arrays  
cause bank conflicts as depicted in Fig. 3(a). 

 
R G B R G B R G 

↑        ↖ 
Thread 0 Thread1 

(a) Thread 0 and Thread 1 
access the same bank  

R G B 0 R G B 0

↑         ↑  
Thread 0 Thread1 

(b) Thread 0 and Thread 1 
access different banks 

(Figure 3)  Memory bank accesses of thread 0 and 1 

To avoid this, we padded 8 bits at the end of each pixel so 
that a thread’s request for a pixel’s values (R,G,B) is 
restricted to a single discrete memory bank. Fig. 3(b) shows 
how we pad a RGB array with 8 bits. Padding improved 
performance of RGB-based filters by 2% - 8%. 

 
3.5 Predicated Execution 

One feasible way to reduce the number of branches is to 
use predicated instructions. With predicated instructions the 
controlling condition (e.g., from an if statement) is attached 
to the instruction itself. At run-time, the instruction is 
scheduled for execution, but only executed if the condition is 
true. This is called predicated execution [2]. If we write a 
program in a way such that conditional constructs have two 
branches, then the OpenCL compiler schedules both 
branches using predicated instructions (if the number of 
statements controlled by the condition is below a given 
threshold).  

 

1: 
2: 
3: 
4: 
5: 
6: 

offset ← width * y + x 
if  x > 1000  then 

g_out[offset] ← 0 
else then 

g_out[offset] ← 255 
end if 

(a) a non-optimized conditional 
construct example 

1:
2:
3:
4:
5:
6:
7:

offset ← width * y + x 
if  x > 1000  then 

out ← 0 
else then 

out ← 255 
end if 
g_out[offset] ← out 

(b) an optimized conditional  
construct example 

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:

coord ← ( x, y ) mod ( 2, 2) 
if  coord.y = 1  then  

if  coord.x = 1  then 
out ← mask[0]; 

else then 
out ← mask[1] 

end if 
else if  coord.y = 0  then 

if  coord.x = 1  then 
out ← mask[2]; 

else then 
out ← mask[3] 

end if 
end if 
(c) optimized conditional 
constructs of demosaicing  

(Figure 4) non-optimized/optimized conditional constructs 

We now consider applying predicated execution to 
demosaicing. Based on the coordinates (x, y), there are four 
possible conditions in the Bayer-patterned input image [4], 
see also Fig. 4(c). A combination of “if”, “else if” and “else” 
or “switch ~ case” statements can be used for a thread to 
decide which condition applies.  Let’s assume that we use a 
combination of one ”if”, two “else if” and one “else” for 
demosaicing. In this case, we will have at least two branch 

points and one convergence point. Because the computation 
of the target address for the indirect memory address (lines 3 
and 5) requires enough instructions to exceed the compiler’s 
threshold for branch predication, a branch is introduced. 
(Note that the threshold for the number of instructions for 
predicated execution is 3 or 6 in CUDA [2].) We can stay 
below the threshold by introducing a temporary variable for 
g_out, which doesn’t include address calculations for the 
indirect memory access. The optimized code that uses 
predicated execution is depicted in Fig. 4(b). The code for all 
four cases is shown in Fig. 4(c). Note that, although we 
removed just one branch by this schedule, we could acquire a 
29% performance increase by this optimization. 

For median filter, sorting algorithms can be commonly 
used for median filtering and we chose insert sort as the 
baseline. To apply predicated execution, a proper approach is 
Paeth’s algorithm [6] in which the minimum and the 
maximum of the first six elements in an array are determined 
and eliminated without applying a loop. Then the 7th, 8th, 
9th elements are moved to the empty space and repeated 
previous actions until the median is determined (3x3 mask). 
We can change all comparisons in Paeth’s median filter 
algorithm into two-directional conditional constructs similar 
to what McGuire showed in [4, 5], because only comparisons 
of two values and swap instructions are involved in this 
algorithm. It means we can also apply predicated execution 
to the median filtering easily, eliminating all possible 
branches. With our predicated execution the number of 
diverging branches was reduced from 7866 to 3832 for the 
demosaicing filter (by 51%), and from 73679 to 2059 for 
median filter (by 97%).  

 
3.6 Pinned Memory 

Host memory paged out to the hard-disk can affect 
program performance due to lower memory bandwidth. 
However, OpenCL provides an API to lock data into the 
host’s memory (pinned memory or page-locked memory [1]). 
Therefore, pinned memory use is useful only when data is 
being transferred between the host and the device. However, 
it should be noted that pinned memory might cause 
performance degradation of other programs running on the 
machine as there would be a higher chance for those 
programs to be paged-out from physical memory. 

 
4. Experimental Results 

To evaluate our proposed optimizations, we implemented 
filters using the CUDA SDK 3.0 ToolKit on CentOS 5.5 and 
a Geforce GTX 275 equipped with 30 CUs and 1 GB of 
device memory. In addition to GPGPU filters, we 
implemented the same filters for single thread execution, on 
an Intel quad-core i5 750 2.67MHz to determine the 
speedups of parallelized filters over sequential execution. In 
the following, all execution times are given in milliseconds, 
and the resolution of input images for Sections 4.1 and 4.2 is 
1920x1080, full HD. To test the median filter, we added 10% 
of salt-and pepper noise before running the filter but the time 
of adding noise is not added to the actual time for 
measurement. 
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<Table 1>  Cumulative results from left to right column after a series of optimizations (*:Maximum-optimized result)

Global  
4x4 

Global 
16x20 

Global 
16x20 

Local 
16x20 

Local Pad.
16x20 

Local Pad. 
16x20 Filter 

Type 
CPU 

Sequential 
Baseline Best Size Pinned Local Mem. Padding Predicated Exec. 

CPU/GPU 
Speedup 

Base/Opt. 
Speedup 

Blur 3x3 147.4 8.00 6.75 6.24 5.94 *5.52 N/A 26.7 1.45 
Sharp 3x3 150 8.00 6.78 6.27 5.98 *5.57 N/A 26.9 1.44 

Median 3x3 666 21.38 15.86 15.34 15.02 14.52 *10.33 64.8 2.06 
Demosaicing 5x5 117.92 13.53 11.24 7.95 6.66 6.46 *4.92 23.9 2.75 

Blur 5x5 332.4 16.20s 13.21 12.68 9.46 *8.88 N/A 37.4 1.82 
Sharp 5x5 333.2 16.22 13.37 12.82 9.49 *8.89 N/A 37.5 1.82 

Median 5x5 2700 119.75 81.80 81.26 79.07 78.23 *44.45 61.1 2.69 
Oil 9x9 2325 237.5 240.6 240.1 211.9 *167.5 N/A 13.9 1.42 

 
4.1 Comparison of Loading Schemes 

Table 2 shows the execution times for four approaches of 
loading all pixels in the 16x20 work-group into local 
memory. “Self” is the simplest as each thread loads one 
corresponding global memory block. “One thread” means 
that only one thread loads all work-items into local memory 
and “NVIDIA” means the loading scheme used in the 
sample of NVIDIA CUDA SDK 3.0 Toolkit. You can see 
how significantly idle threads caused by one thread scheme 
deteriorate the loading time.  
 

<Table2>  four approaches of loading global memory  
into local memory 

Mask size Self Our scheme NVIDIA  One thread

3x3 3.47 3.74 4.26 22.49 

5x5 3.47 3.74 N/A 26.49 

7x7 3.47 3.81 N/A 30.88 

9x9 3.47 3.81 N/A 35.64 

 
All loading schemes here include global memory access 

and it always takes 3.23 ms regardless of mask size. 
Therefore, you can think that our scheme is actually two 
times faster than NVIDIA scheme if we subtract 3.23 ms 
from measured times 

 
4.2 Cumulative Results after Optimizations 

 Table 1 presents cumulative results after a series of 
optimizations proposed in this paper. The second column 
shows the execution times of image filter programs for 
sequential execution and the third column indicates the 
baseline implementation for our optimizations. Actual 
execution times after each optimization begin from 4th 
column towards the right and indicating proper block size, 
pinned memory use, local memory use, padding RGB and 
predicated execution, respectively. The 8th column shows 
speedups over all optimizations. We achieved from 1.42 to 
2.75 speedups over the GPGPU baseline and a maximum 
speedup of 64.8 over the sequential case. Note that filters 
with bigger mask size show more performance gain from 
local memory use except for the median filter. The reason 
for low performance gains of median can be explained by 
the fact that the median filter stores again work-items into 
an array for sorting them. But this overhead can be naturally 
amortized by predicated execution as can be inferred from 
the 8th column. 
 

 

4.3 Consistency of Scalability for Work-items 

Many-core accelerators such as GPGPU should show 
consistent performance results based on the number of input 
work-items in terms of scalability. Thus we conducted 
experiments to verify the consistency of scalability for the 
number of work-items which is equal to the number of 
pixels in the input image. As you can see at Table 3, Full-
optimized median filter still show the same scalability 
before being optimized. Speedup here means the speedup 
over the previous smaller input image.  

 
<Table 3> Execution time for the number of work-items (resolutions)

 for median filter with 3x3 mask 

 1920x1080 1280x720 720x480 640x480

Baseline 21.38 9.72 3.87 3.48 

Speedup over prev. 2.19 2.51 1.11 - 

Full-optimized 10.33 4.58 1.80 1.60 

Speedup over prev. 2.25 2.54 1.12 - 

 
5. Conclusion 

We have presented a set of optimizations for camera ISP 
filters, taking various hardware features of GPGPUs into 
account. Our filter algorithms have been implemented in 
OpenCL, which is a vendor-independent programming 
interface for GPGPUs. We expect our algorithms to show 
similar results when realized on hand-held embedded 
devices such as tablet PCs and smart-phones. 
 

References 

[1] OpenCL Overview. URL http://www.khronos.org/ 
developers/library/overview/opencl_overview.pdf 
 
[2] NVIDIA OpenCL Programming Guide. URL  
http://www.nvidia.com/OpenCL 
 
[3] M. McGuire. A fast, small-radius gpu median lter. In ShaderX6, 
2008. 
 
[4] M. McGuire. Efficient, high-quality bayer demosaic Fltering on 
GPUs. J. Graphics Tools, 13(4):1-16, 2008. 
 
[5] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, 
A. E. Lefohn, and T. J. Purcell. A survey of general-purpose 
computation on graphics hardware. Computer Graphics Forum, 
26(1):80-113, 2007. 
 
[6] A. W. Paeth. Median finding on a 3x3 Grid. In Andrew 
Glassner, editor, Graphic Gems, pages 171-175. Academic Press, 
Boston, 1990. 

- 1787 -

제34회 한국정보처리학회 추계학술대회 논문집 제17권 2호 (2010. 11)




