SF-P010

Degradation of gas-phase toluene by TiO₂ loaded on carbon fibers using Atomic Layer Deposition (ALD) under UV irradiation

Yuan Luo¹, Myoung Joo Kim¹, Hyun Ook Seo¹, <u>Kwang-Dae Kim¹</u>, Wei Sheng Tai¹, Young Dok Kim^{1*}

> ¹Department of Chemistry, Sungkyunkwan University Cheoncheon-dong, Jangan-gu, 440-746, Suwon Korea

 TiO_2 thin films were prepared on C fibers, and photocatalytic activity of these films for removing gas-phase toluene was studied. TiO_2 films were deposited on C fiber with 0.5 Å-per-cycle growth rate by Atomic Layer Deposition (ALD) using TTIP (titanium tetraisopropoxide) and H₂O as precursors. The catalysts were characterized by Brunauer- Emmett-Teller (BET) for surface area and Scanning Electron Microscope (SEM) for morphology, respectively. Moreover, the samples were further characterized by X-ray Photoelectron Spectroscopy (XPS). As a function of TiO₂ thickness, no significant change in the photocatalytic activity could be identified. Interestingly, the bare-carbon fiber showed an even higher photocatalytic activity than the TiO₂ thin films for removing toluene. Origin of the high photocatalytic activity of the bare C fiber is discussed.