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1. Introduction

Understanding the characteristics of long term transport behavior in porous media is essential in the assessment of
radionuclide release through the backfill of high level radioactive waste (HLW) disposal facility. By calculating the
movement of dissolved radionuclides through the backfill material or host rock, we can evaluate the impact and safety
of the HLW facility for environment. Bentonite is a key component of the engineered barrier system (EBS) of the
facility, and diffusion is the most important transport mechanisms of radioactive species. We have introduced a new
numerical analysis method using a molecular dynamics simulation (MD), a multiscale homogenization analysis (HA)
for the diffusion process of some chemical species in bentonite. Microscale properties such as diffusion coefficient of
each ion have been calculated by using MD. Macroscale properties were determined by using the HA method, and a
FEM was applied for analyzing the macroscale diffusion process. Under various temperature (293, 323 and 353K) and
dry density (1.2, 1.6, 2.0Mg/m’) of bentonite, diffusion behaviors of **CI" and *’I" and Na ions of NaCl-Na-beidellite

and Nal-Na-beidellite model were calculated. We compared the results with in situ and laboratory experimental data.

2. Procedure of Numerical Analysis
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3. Results of Numerical Analysis
Dependence of Dry Density

Based on the MD/HA calculations we understand that the diffusion coefficient of each ion is inversely proportional
to the d-y density. Breakthrough curves of concentration, C/C,, (C, is the tracer concentration at time t and C, is the

initini concentration in the reservoir) calculated by the FEM diffusion analysis using macroscale diffusion coefficients
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obtained by the MD/HA procedure are given in Figure 2 together with other experimental data ([2], [3], [4]). Figure 2

shows that both I" and CI” diffuse slower as increasing the dry density and numerical results are well fitted with the

experimental results.
Dependence of Temperature

Breakthrough curves of concentration due to temperature change
are shown in Figure 3. We understand that the concentration profiles of

I" and CI” are proportional to the temperature at the same elapsed time.

4. Conclusion

In this research, we introduced a new FEM analysis method using
MD/HA results under various dry density and temperature conditions.
That is, by the MD/HA procedure we calculated homogenized
diffusion coefficients, and by introducing these results into a
macroscale FEM analysis, the multi-species diffusion problem was
solved. The results show that the diffusion profiles are proportional to

the temperature and inversely proportional to the dry density.
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Fig.2 C/Cyresults given by FEM (under
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Fig. 3 C/Cyresults given by FEM (under various

temperatures)





