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1. Introduction

In the field of geomechanics the diffusion problem in porous media saturated with multi-component solution has
been treated independently of the seepage problem [1], [2]. This is a strange context since both problems must be
established on the basis of mass conservation. We here discuss a relation of diffusion and seepage on the basis of
mixture theory [3]. In the seepage problem we shed light on a physical implication of seepage velocity. In the diffusion
problem we show sorption can be introduced on concepts of a source term, a distribution factor or an equation of
adsorption isotherm. Note that we can apply a multi-scale homogenization analysis [4] for this diffusion problem, and
the molecular dynamics (MD) simulation is essentially important to specify the local properties of the porous media [5].

Notation: “!a” implies “do not sum over the subscript repeated o”.

2. Diffusion and Seepage Theory in Porous Media Saturated with Multi-component Solution
Diffusion equation in fluid phase
If n, is the amount of substance of the ath species of the mixture fluid, the volume-molar concentration or fraction

Q, and mass density p, are defined as follows:
P,
n,=|nwdv=| n=%d la 1
o= o= i (@) o

where n is the porosity and m,, is the molecular weight of the ath species.
Let v, be the mass supply of the ath species caused by, for example, a chemical reaction, and . be an adsorption at

each local grain surface [';. Then the mass conservation law of the oth species can be written by

d
M+np divy, = Ol p,,

7 X — +divinp,v,)=ny,—¢* = (la) ()]
where v, is the velocity of the ath species in mixture fluid and &, is the volumetrically estimated adsorption derived

from &,. We sum up (2) for all the ath species and get

d . J
$+npdlw (p)+dlv(an) 0; v:;Zpava, p=Zpa §*=Zg*,, 3)

We define the diffusion velocity ¥, =v, ~v and the mass concentration c, = p, / p , then by substituting these into

(2) we get the following diffusion equation:

e —np(aa )=—diV(nPa‘_’.,)+n7,,-€*a () @

Note that we have the constrain condition Z ¢, =1, and we can introduce Fick's law as np v, = Z gradc,.

Bas

Diffusion equation in solid phase

Similar to the above discussion we the diffusion equations of solid phase corresponding to (1), 2), (3) and (4):
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n*, = [ (-n)o*dv= L(l—n)’i;" & (la) )

e (=1P%) (a-mp.) +(1-n)p*, divv*, =———a((1_n)p*") +div((l1-mp*, v*,)=(1-nyr* —c* (la) (6)

dt ot
d.((1-n)p* . o((l-n)p*) ..
i—-;tz)p—)ﬂl—n)p*dwv* =%+dw((l—n)p*v*)=0; vF =%Zp*ﬂv*a, =3 p* (D
P* «
d.c* oc* . —

(1-nm)p* dta =1-n)p* at“+v*l]gradc*,, =—div((1-n)p*, 7*)+(1-n)y*, —c* (&) ()
where we have the constraint Za c*, =1 and define the velocity gradient L*, stretching tensor D* and spin tensor W*
of the solid phase as

L*=gradv* = D*+W* = D*=(L*+L*")/2, W =(L*-L*)/2 )

Seepage equation
When we solve the diffusion equation (4), it is a question how to specify the mean velocity v. For this purpose in
geomechanics it is common to derive the seepage equation from (3) and (7) under the incompressible condition of fluid

and intrinsic solid part, i.e., p=constant, p*=constant. Under these conditions (3) and (7) become

% +div(nv) —vOgradn =0 (10)
d.n

-———+(-n)trD*=0 11
PRl an

We have the following relation

‘f;t" = %—(v—v*) Ogradn =0 (12)

and by substituting (12) into (11) we get
%=(l-—n)trD*+v* Ogradn (13)

We substitute (13) into (10) and get the following seepage equation:
(1-n)tr D*+div(nv) —v * Ogradn =0 (14)

We can use Darcy's law for (14).

3. Conclusion
We derived the diffusion equations in fluid phase and solid phase based on the mass conservation law, and then we
showed the seepage equation from these diffusion equations. Thus both diffusion and seepage phenomena can be drawn

in the same framework.
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