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Abstract

Most of the studies use model order reduction for low frequency (LF) response analysis due to their 

high computational efficiency. In LF response analysis, one of model order reduction, algebraic 

substructuring (AS) retains all LF modes when using the modal superposition. However, in 

mid-frequency (MF) response analysis, the LF modes make very little contribution and also increase 

the number of retained modes, which leads to loss of computational efficiency. Therefore, MF response 

analysis should consider low truncated modes to improve the computational efficiency. The current 

work is focused on improving the computational efficiency using a AS and a frequency sweep 

algorithm. Finite element simulation for a MEMS resonator array showed that the performance of the 

presented method is superior to a conventional method.
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1. Introduction

So far, a substructuring-based model order reduction including algebraic substructuring [Gao et al. 

2008] has been developed to improve the efficiency in a linear dynamic analysis of large systems. 

Numerical techniques that consider low- and high-frequency mode truncations are also required for the 

mid-frequency response analysis. There have been two recently-introduced methods to compensate for 

the low- and high-truncations; one is the frequency sweep algorithm [Bennighof et al. 1998], and the 

other is the mode acceleration method [Qu 2001]. The convergence of frequency sweep algorithm was 

verified when it was applied to compensate for both the truncation errors [Ko et al. 2008]. 

In this work, the finite element models of practical resonator arrays were used for the investigation of 

performance of presented method. A general purpose finite element package ANSYS [ANSYS 2007] was 

adopted as a conventional method for comparison with the present method.

2. Mid-Frequency response analysis

The discretized model of a structure for a continuous single‐input and single‐output second‐order 

system can be written as 

  ** 정회원∙건국대학교 항공우주정보시스템공학과 연구교수 jhko@aero.konkuk.ac.kr 

- 135 -



( ) ( ) ( ) ( ), ( ) ( )TMx t Dx t Kx t bu t y t l x t+ + = =&& &  (1)

with the initial conditions     and    . Here, t is the time variable,  is a state 

vector, N is the degree of freedom (DOF). , , N NM K D ×∈ℜ are the system mass, stiffness and damping 

matrices respectively, where D is approximated by αM + βK. For frequency response analysis of [ωmin, 

ωmax] near a specific mid‐frequency mode, the frequency response function of the dynamic system can 
be given as 

1
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where 1 = 1(ω) = 1 + iωβ, 2 = 2(ω,σ) = -ω2 + σ + iω(α + σβ), and K
σ
 = K – σM. 

In algebraic substructuring (AS) among substructuring‐based model order reductions, first the 

transformation matrix L is obtained from the shifted eigensystem in the Craig‐Bampton form, and next 

the S matrix, which is composed of m substructure modes, is obtained. The subspace spanned by the 

columns of the matrix Am=L-1S is called AS subspace. Projecting the frequency response function H(ω) 

of (2) onto the AS subspace yields 

1 1
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where Gm is the dynamic matrix, Km
σ = Am

T KσAm, Mm = Am
T MAm, lm = Am

T l, and bm = Am
T b. m is 

much smaller than N. The frequency response function of Eq. (3) is represented by the summation of 

( )nH ω  and ( )tH ω , which are computed by pn and pt , respectively:

( ) ( ) ( )m n tH H Hω ω ω= + (4)

From (3), mode superposition yields 

1
1 2( ) ( ) ( )T T T

n m n m n n n mH l p l I bσω ω Φ γ Θ γ Φ−= = +  (5) 

where ( n
σΘ ,Φn) are the eigenpairs of the eigensystem of (Km

σ, Mm). n is very small as compared to m.  

An iterative scheme, the frequency sweep algorithm (FS) is used for error compensation by  

 

1 1 1 1

1
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t m t t t m n n n mH l p p p K rσ σω ω ω ω Φ Θ Φ ω

γ
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    (6)

The iteration (6) guarantees its convergence by satisfying the condition that the contraction ratio   is 

smaller than one when the cutoff values for the eigenvalues of the normal modes are determined by

min max max max/   and  /d dσ σλ ξ λ ξ= − = , (7)

where d(ω,σ) = 2 1| / |γ γ−  and dmax = max{d(ωk,σ), 1 ≤ k ≤ nf }, in which nf is the number of 

sampling frequencies. 
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AS+FS Modal ANSYS

m 469 ‐

n 5 287

FS time 0.19 sec. ‐

Total time 10.34 sec. 162 sec.

3. Results

The finite element model of a single resonator is constructed by brick elements with its order of 

24,960 as shown in Fig. 1(a). From eigenvalue computation, the extensional wine glass mode, whose 

natural frequency is 638.6 MHz, is shown in Fig. 1(b), and the corresponding eigenvalue of the mode is 

the 281‐th small eigenvalue. Frequency responses are computed at 201 sampling points.

      

Figure 1 (a) Finite element model (b) its extensional wine glass mode, and

 (c) frequency response functions of the single resonator

Table 1 Performance comparison

According to Fig. 1(c), the frequency response functions of AS+FS and Modal ANSYS are clearly 

agree with those of Direct ANSYS. It is indicated in Table 1 that the time of FS iteration is negligible, 

and AS+FS uses 5 modes in 469 AS subspace instead of 287 modes in 24,960 FE subspace. 

Approximately 16 times more time was required for Modal ANSYS than for AS+FS. 

A 4‐by‐4 resonator array is modeled, as shown in Fig. 2(a), the order of its finite element model is 

371,280 and, resonant mode is represented in Fig. 2 (b). Frequency responses are computed at 201 

sampling points.
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Figure 2 (a) Finite element model, (b) a resonant mode close to the extensional wine glass mode, and 

(c) Frequency response functions of the 4‐by‐4 resonator array
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AS+FS Modal ANSYS

M 7,101 ‐

N 90 4,335

FS time 7.29 sec. ‐

Total time 226.49 sec. > 10 hours

Table 2 Performance comparison  

According to Fig. 2(c), the frequency response functions of AS+FS are in good agreement with those 

of Direct ANSYS.  It is indicated in Table 2 that the time of FS iteration is short, and AS+FS uses 90 

modes in 7,101 AS subspace instead of 4,335 modes in 371,280 FE subspace. For this case, AS+FS spent 

less than a hundredth of the elapsed time of Modal ANSYS. We also found that the frequency response 

curve of 4 by 4 array has wider bandwidth than that of single resonator.

4. Conclusion

The performance of the presented method is superior to a conventional method through finite element 

simulation for a MEMS resonator array.
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