
- 619 -

Ⅰ. Introduction

With the development and expansion of

internet-wide application, the construction of

network has great changes as the need of

reliable protocol is widely deployed from the

traditional sever-client model to peer-to-peer

model which is developed by gossip-based

protocol. Peer-to-peer systems have many

interesting technical aspects like decentralized

control, self-organization, adaptation and

scalability.

In this paper, we mainly focus on the pure

p2p system which means each node in a p2p

network has similar functionalities and plays

the role of a server and a client at the same

time. This provides immense flexibility for

users to perform application-level routing, data

posting, and information sharing on the

Internet. We propose a scalable membership

빠른 노드 검색과 부하감소를 위한 새로운 가쉽기반 P2P

네트워크 알고리즘

축효위*, 장경식**

*한국기술교육대학교 전기전자공학과

**한국기술교육대학교 정보기술공학부

A Novel Algorithm for Fast Node-search and Redundancy Reduction in

Gossip-based P2P Network

Xiao-Wei Zhu*, Kyung-Sik Jang**

*Dept. of Electrical and Electronic Engineering, Korea University of Technology and Education

**Dept. of Information Technology Engineering, Korea University of Technology and Education

E-mail : felixzoo@kut.ac.kr

요 약

가쉅 기반 프로토콜을 이용한 P2P 네트워크 급속히 발전하고 있다. 특히 그룹통신에서 는 가쉽

기반 프로토콜이 높은 신뢰성을 보장하고 확장성이 있다. 본 논문에서 제시하는 자기 조정 프로토콜

은 사용 그룹 크기를 모르는 경우에 이웃에서 목록을 얻는다. 그리고 이웃 목록의 노트 백업 메커니

즘을 이용해서 시스템의 부가적인 부하를 감소시킨다. 제안된 시스템 모델, 기반의 알고리즘과 시뮬

레이션 평가 결과들을 본 논문에서 제시한다.

ABSTRACT

P2P networks are undergoing rapid progress and inspiring numerous developments by gossip-based

protocol. Gossip-based protocols for group communication have attractive scalability and reliability properties.

We propose a self-organizing algorithm in the sense that the size of neighbor list achieved without any node

knowing the group size. We also propose an efficient mechanism to reduce the redundancy of the system by

backing up the nodes in the neighbor list. We present the design, theoretical analysis, and a detailed

evaluation of the proposed algorithm and its refinements.

키워드

P2P, gossip-based self-organizing neighbor list

한국해양정보통신학회 2009 춘계종합학술대회

- 620 -

protocol. This protocol can reduce the

redundancy of network system and make a

fast-searching of the nodes throughout the

network but is achieved without any node

knowing the group size. The protocol is simple,

fully decentralized, and self-configuring. As the

number of participating nodes changes, we

show both analytically and through simulation

that the size of partial views automatically

adapts to the desired value.

As shown is figure 1, every node in this

pure p2p system has a list called neighbor list

which owns some nodes links as the size of

the neighbor list. The messages will be

gossiped among the nodes and their neighbors.

For example, when a new node will join the

network, it will firstly send a join message to

the bootstrap node, and then the bootstrap

node will assign the new node some nodes in

its neighbor list. So the new node can gossip

its joins message over the network and get the

entrance with its own neighbor list.

Fig.1. Network diagram

The remainder of the paper is organized as

follows: We describe the membership protocol

in Section2, including a sketch of the theory

behind it. and we conclude in Section 3.

Ⅱ. Design and optimization

Figure 2 depicts the join algorithm diagram

of our protocol. As we can see the procedure

of node jon, we will have a detailed

description about that in the following part.

Fig.2. Depiction of the join algorithm diagram

A. Node joining and partner management

Each node has a unique identifier, such as its

IP address or node ID, and maintains a partner

list containing a partial list of the identifiers

who have the best connection with this node,

meanwhile, each node also maintains a backup

list containing nodes backup for the nodes in

partner list. An example of partner list and

backup list is shown in figure 3. The criteria of

making the lists depend on the wire speed and

network condition. According to this

performance, we will make the top N nodes

into partner list, and the following M nods into

the backup list.

In a basic node joining algorithm, a newly

joined node first contacts the bootstrap node.

According to the new node’s IP address,

response time (delay), wire speed and such

network condition, the bootstrap will send a

join message to its partners. Each message is a

4-tuple <seqnum,id,timetolive,timestamp>, where

seqnum is a sequence number of the message,

id is the node’s identifier, time to live records

the remaining valid time of message, time

stamp is the real time when the message have

any actions.

Fig.3. Neighbor list

빠른 노드 검색과 부하감소를 위한 새로운 가쉽기반 P2P 네트워크 알고리즘

- 621 -

Fig.4. Node join

Since the nodes in backup list backup for

the nodes in partner list, we have 3 cases

when the node receives a join message:

(1)partner list is full while backup list not; (2)

partner list and backup list are both

full.(3)partner list is not full and backup list is

empty. As show in figure 4, for case (1), the

new node will be added into the backup part

after comparing its link condition with the

others; for case (2), the joining message will be

sent to nodes in the partner part; for case (3),

node will be added directly to the backup part.

Once, a node in the network receiving this

join message will check its partner list and

backup list. The first thing the node will do is

to compare the new node with the nodes in

both lists. Second, if the new node’s

performance is better comparing with the node

1~N+M. the new node will be add into the

list. If not; for case 1, the new node will be

only added into the backup list. After being

added, the new nodes will receive a reply

message which has the same format as joining

message.

If node does not accept the new node, it

will forward the joining message to its partners

and so on.

When TTL=0, this procedure will be over

and, of course, the new node will receive

several reply messages. According to the reply

messages, the new node will also rank the

performance and add the top 1 to N nodes

into its partner list and the following M nods

into the backup list。

s is the new node.

m is the size of neighbor list.

n is the size of partner list.

Tdisthenode’sdelaytime.

Algorithm1: Node join management

//forward a join message of node s to all the

nodes p of the neighbor list

for all nodes p∈neighbor list do

send(s,join message) to p;

end for

Algorithm2: Handling a forwarded join

message

//nodes p receiving s join message

if s∈neighbor list then

algorithm described in Algorithm 1;

else if p≠m then

neighbor list= neighbor list + {s}

else

for(j=0,j<m,j++)do

compare TdswithTdpj;

if Tds<Tdpj
neighbor list = neighbor list+{s};

delete p­­­m;
else algorithm described in Algorithm 1;

endif

end if

B. Node departure and system recovery

In order to keep to stable size of node’s

partner list, we need all the nodes to keep

contact with their partners and backup nodes

always. Because our network actually is an

asymmetric network, we should make each

node to send a probe message in time TP to

detect whether its partner and backup nodes is

in or out.

Now we are going to introduce the function

of backup list.

Before this we have to declaim that the

communication between nodes is based on

gossip protocol, which means it will occur a lot

of redundancy during each communication, in

order to deduce the redundancy, we issue this

backup list.

In the network, when node A sends a probe

message and fine that a node in its backup list

is gone, (there are still some nodes in backup

list) it will do nothing, but if there is a node

gone in the partner list, node A will make the

first node in its backup list be its partner node,

which means the backup node changes into the

partner node. When all the nodes in backup

list are gone, node A will initiate the recovery

message to the bootstrap node similar to the

join message to find the new proper nodes for

partner and backup.

Due to the backup list, we don’t have to

gossip whenever there’s a node in partner list

is gone which will help to reduce the

redundancy.

한국해양정보통신학회 2009 춘계종합학술대회

- 622 -

Algorithm3: system recovery

//node sending a probe to detect its neighbors

if p<n then

for all nodes p∈neighbor list do

send(join message) to bootstrap;

end for

C. Data searching and transmission

The backup list will not perform during the

data searching and transmission. There are

nodes in the partner list play the role of

neighbors. When a node send a searching

message for a certain data, it will issue a

message of 5-tuple<seq num, id, time to live,

delay time, contentseq>, where the first four

items are same as the joining message,

contentseq is the sequence of the data which

will generated to a number by system. A node

who wants a data will send this kind of

message to its partner list. And the node who

receives the message will check its own content

list and forward this message to other nodes or

original node by adding a similar message after

the original message. As show in figure 5:

Fig.5. message gossiping

If nodes received this message again, it will

stop forwarding.

After doing this, the original node can

receive the reply from the other nodes in the

network and according to the message table, it

can calculate the transmit time which means it

can choose the best transmit path and find the

inferior path as backup path.

Algorithm4: Data searching

//sending a searching message for data x

for all nodes p∈partner part do

send(searching message) to p;

end for

Algorithm5: handling a searching message

//receiving a searching message with TTL=t

if t>0;do

checking files;

if no file match the request then

forward (searching message = searching

message + node information)；

t--；

else send reply message = searching

message + node information + content);

end if

else if t=0; do

checking files;

if no file match the request then

delete message;

else send reply message = searching

message + node information + content);

end if

end if

Ⅲ. Conclusion

In this paper we propose the design and

theoretical analysis of our protocol. The

protocol provides each member a neighbor list

which consists of partner and backup lists.

With the help of this, node can have a fast

searching of the nodes in the network and the

network redundancy will be reduced due to

the decrease of gossip time.

Reference

[1] Xinyan Zhang, Jiangchuan Liu, Bo Li,

and Tak-Shing Peter Yum,

"CoolStreaming/DONet: A Data-Driven Overlay

Network for Efficient Live Media Streaming,"

[2] Ayalvadi J. Ganesh, Anne-Marie

Kermarrec, and Laurent Massoulie"Peer-to-Peer

Membership Management for Gossip-Based

Protocols"IEEE TRANSACTIONS ON

COMPUTERS, vol. 52, No. 2, February 2003

[3] Soontaree Tanaraksiritavorn and Shivakant

Mishra"Evaluation of Gossip to Build Scalable

and Reliable Multicast Protocol"

[4] Djamal-Eddine Meddour, Mubasher

Mushtaq"Open Issuse on P2P Multimedia

Streaming"

