E
rt
b
(r
oY
=
i3
o
ol
ol
M)
P~
il
o
&
=
il
Mo
AN
)
ity
N,
2=
3
No
=3

A Novel Algorithm for Fast Node-search and Redundancy Reduction in

Gossip-based P2P Network

Xiao-Wei Zhu', Kyung-Sik]ang**
*Dept. of Electrical and Electronic Engineering, Korea University of Technology and Education
**Dept. of Information Technology Engineering, Korea University of Technology and Education

E-mail : felixzoo@kut.ac.kr

. 53 aFFAdAA = 7H
2l |8l= A7) 24 T2 EF
e L B3 o% BEe] kE W) vAY
ATk AtE A =" 2, 7IRke] daEEF3 AlE

ABSTRACT

P2P networks are undergoing rapid progress and inspiring numerous developments by gossip-based
protocol. Gossip-based protocols for group communication have attractive scalability and reliability properties.
We propose a self-organizing algorithm in the sense that the size of neighbor list achieved without any node
knowing the group size. We also propose an efficient mechanism to reduce the redundancy of the system by
backing up the nodes in the neighbor list. We present the design, theoretical analysis, and a detailed
evaluation of the proposed algorithm and its refinements.

A=

P2P, gossip-based self-organizing neighbor list

control, and
scalability.

In this paper, we mainly focus on the pure

| . Introduction self-organization, adaptation

With the development and expansion of

internet-wide application, the construction of
network has great changes as the need of
reliable protocol is widely deployed from the

traditional sever-client model to peer-to-peer
model which is developed by gossip-based
protocol. Peer-to-peer systems have many

interesting technical aspects like decentralized

p2p system which means each node in a p2p
network has similar functionalities and plays
the role of a server and a client at the same
time. This provides immense flexibility for
users to perform application-level routing, data
posting, and information sharing on the
Internet. We propose a scalable membership

- 619 —

S| A R EAIEE] 2009 FAFT T3]

protocol. This protocol can reduce the
redundancy of network system and make a
fast-searching of the mnodes throughout the
network but is achieved without any node
knowing the group size. The protocol is simple,
fully decentralized, and self-configuring. As the
number of participating nodes changes, we
show both analytically and through simulation
that the size of partial views automatically
adapts to the desired value.

As shown is figure 1, every node in this
pure p2p system has a list called neighbor list
which owns some nodes links as the size of
the neighbor list. The messages will be
gossiped among the nodes and their neighbors.
For example, when a new node will join the
network, it will firstly send a join message to
the bootstrap node, and then the bootstrap
node will assign the new node some nodes in
its neighbor list. So the new node can gossip
its joins message over the network and get the
entrance with its own neighbor list.

P
Bootstrap node

Node
Neighbor list

Link

Fig.1. Network diagram

The remainder of the paper is organized as
follows: We describe the membership protocol
in Section2, including a sketch of the theory
behind it. and we conclude in Section 3.

I1. Design and optimization

Figure 2 depicts the join algorithm diagram
of our protocol. As we can see the procedure
of node jon, we have a detailed
description about that in the following part.

will

Receive the reply message
ves No Send a join message

Ranking all nodes Bootstrap node

Finish joining Forward this join message
o its neighbor nodes

Nodes in the network

| Check the emptiness of the partner list |

Send
the reply
message

Add the new node as backup

Fig.2. Depiction of the join algorithm diagram

A. Node joining and partner management

Each node has a unique identifier, such as its
IP address or node ID, and maintains a partner
list containing a partial list of the identifiers
who have the best connection with this node,
meanwhile, each node also maintains a backup
list containing nodes backup for the nodes in
partner list. An example of partner list and
backup list is shown in figure 3. The criteria of
making the lists depend on the wire speed and
network condition. According to this
performance, we will make the top N nodes
into partner list, and the following M nods into
the backup list.

In a basic node joining algorithm, a newly
joined node first contacts the bootstrap node.
According to the new node’s IP address,
response time (delay), wire speed and such
network condition, the bootstrap will send a
join message to its partners. Each message is a
4-tuple <seqnumy,id, timetolive timestamp>, where
seqnum is a sequence number of the message,
id is the node’s identifier, time to live records
the remaining valid time of message, time
stamp is the real time when the message have
any actions.

Neighborlist

Node 1
Node 2
Node 3

Partner part

Node N

MNode N+1

backup part
ackupp MNode N+2

Node N+M

Fig.3. Neighbor list

- 620 —

BRE o= 740 Palghas S AR 7RI PP MIEQIA Qe

Neighborlist Neighbor list
Node 1 Partner part Node 1
Node 2 Node 2
Partner part Node 3 Node 3
:4-(3/)[New Node "
Node N-1 Node N
backup part © backup party| 1odE N+
PP PP Node N+2
\nde b1

Fig.4. Node join

Since the nodes in backup list backup for
the nodes in partner list, we have 3 cases
when the node receives a join message:
(I)partner list is full while backup list not; (2)
partner list and backup list are both
full.(3)partner list is not full and backup list is
empty. As show in figure 4, for case (1), the
new node will be added into the backup part
after comparing its link condition with the
others; for case (2), the joining message will be
sent to nodes in the partner part; for case (3),
node will be added directly to the backup part.

Once, a node in the network receiving this
join message will check its partner list and
backup list. The first thing the node will do is
to compare the new node with the nodes in
both lists. Second, if the node’s
performance is better comparing with the node
1~N+M. the new node will be add into the
list. If not; for case 1, the new node will be
only added into the backup list. After being
added, the new nodes will receive a reply
message which has the same format as joining
message.

If node does not accept the new node, it
will forward the joining message to its partners
and so on.

When TTL=0, this procedure will be over
and, of course, the new node will receive
several reply messages. According to the reply
messages, the new node will also rank the
performance and add the top 1 to N nodes
into its partner list and the following M nods
into the backup list,

new

s is the new node.

m is the size of neighbor list.
n is the size of partner list.
Tqisthenode’sdelaytime.

Algorithm1: Node join management
//forward a join message of node s to all the

nodes p of the neighbor list
for all nodes p&neighbor list do
send(s,join message) to p;

end for
Algorithm2: Handling a forwarded join
message
//nodes p receiving s join message
if s&neighbor list then
algorithm described in Algorithm 1;
else if p=m then
neighbor list= neighbor list + {s}
else
for(j=0,j<m,j++)do
compare TgswithTqp;
if Tds<poj
neighbor list = neighbor list+{s};
delete p-—p,

else algorithm described in Algorithm 1;
endif
end if

B. Node departure and system recovery

In order to keep to stable size of node’s
partner list, we need all the nodes to keep
contact with their partners and backup nodes
always. Because our network actually is an
asymmetric network, we should make each
node to send a probe message in time Tp to
detect whether its partner and backup nodes is
in or out.

Now we are going to introduce the function
of backup list.

Before this we have to declaim that the
communication between nodes is based on
gossip protocol, which means it will occur a lot
of redundancy during each communication, in
order to deduce the redundancy, we issue this
backup list.

In the network, when node A sends a probe
message and fine that a node in its backup list
is gone, (there are still some nodes in backup
list) it will do nothing, but if there is a node
gone in the partner list, node A will make the
first node in its backup list be its partner node,
which means the backup node changes into the
partner node. When all the nodes in backup
list are gone, node A will initiate the recovery
message to the bootstrap node similar to the
join message to find the new proper nodes for
partner and backup.

Due to the backup list, we don’t have to
gossip whenever there’s a node in partner list
is gone which will help to reduce the
redundancy.

- 621 —

S| A R EAIEE] 2009 FAFT T3]

Algorithm3: system recovery
//node sending a probe to detect its neighbors
if p<n then
for all nodes pEneighbor list do
send(join message) to bootstrap;
end for

C. Data searching and transmission

The backup list will not perform during the
data searching and transmission. There are
nodes in the partner list play the role of
neighbors. When a node send a searching
message for a certain data, it will issue a
message of 5-tuple<seq num, id, time to live,
delay time, contentseq>, where the first four
items are same as the joining message,
contentseq is the sequence of the data which
will generated to a number by system. A node
who wants a data will send this kind of
message to its partner list. And the node who
receives the message will check its own content
list and forward this message to other nodes or
original node by adding a similar message after
the original message. As show in figure 5:

Original node Seql nodelP | TTL Time0 | ContentSeq ‘

Transmit nodeA Seql nodelP | TTL-1 | Timel

nodelP | TTL-2 Time2

Transmit nodeB Seq2

Fig.5. message gossiping

If nodes received this message again, it will
stop forwarding.

After doing this, the original node can
receive the reply from the other nodes in the
network and according to the message table, it
can calculate the transmit time which means it
can choose the best transmit path and find the
inferior path as backup path.

Algorithm4: Data searching

//sending a searching message for data x

for all nodes pEpartner part do
send(searching message) to p;

end for

Algorithm5: handling a searching message
/[receiving a searching message with TTL=t
if £0;do

checking files;

if no file match the request then

forward (searching message = searching
message + node information) ;

t-;

else send reply message = searching

message + node information + content);
end if
else if t=0; do
checking files;
if no file match the request then
delete message;
else send reply message = searching
message + node information + content);
end if
end if

IIl. Conclusion

In this paper we propose the design and
theoretical ~analysis of our protocol. The
protocol provides each member a neighbor list
which consists of partner and backup lists.
With the help of this, node can have a fast
searching of the nodes in the network and the
network redundancy will be reduced due to
the decrease of gossip time.

Reference

[1] Xinyan Zhang, Jiangchuan Liu, Bo Li,
and Tak-Shing Peter Yum,
"CoolStreaming/DONet: A Data-Driven Overlay
Network for Efficient Live Media Streaming,"

[2] Ayalvadi]J. Ganesh, Anne-Marie
Kermarrec, and Laurent Massoulie"Peer-to-Peer
Membership Management for Gossip-Based
Protocols"[EEE TRANSACTIONS ON
COMPUTERS, vol. 52, No. 2, February 2003

[3] Soontaree Tanaraksiritavorn and Shivakant
Mishra"Evaluation of Gossip to Build Scalable
and Reliable Multicast Protocol"

[4] Djamal-Eddine Meddour, = Mubasher
Mushtaq"Open Issuse on P2P Multimedia
Streaming"

- 622 —

