Measurements of the Penetration Depth of MgB₂ and YBa₂Cu₃O_{7-<u>n</u>} Superconductor Films by Using Sapphire Resonators with Short-Circuited Parallel Plates

Ho Sang Jung^{a,b}, J. H. Lee^{a,b}, Y. H. Cho^{a,b}, W. K. Seong^c, N. H. Lee^c, W. N. Kang^c, and Sang Young Lee^{*,a,b}

^a Department of Physics, Konkuk University ^b Center for Wireless Power Transmission, Konkuk University Seoul 143-701, Korea c Department of Physics, Sungkyunkwan University Suwon 440-746

A measurement method that enables to measure the penetration depth (λ) of superconductor films by using a short-ended parallel plate sapphire resonator is introduced. Variations in the λ of c-axis-oriented MgB₂ and YBa₂Cu₃O_{7-x} films could be measured down to the lowest temperature using a sapphire resonator with a YBa₂Cu₃O_{7-x} film at the bottom. A model equation of $\lambda = \lambda_0 \left[1 - \left(\frac{T}{T_c}\right)^{\tau}\right]^{-1/2}$ for MgB₂ films appeared to

describe the observed variations of the resonant frequency of the sapphire resonator with temperature, with λ_{0} , ϕ , and $T_{\rm C}$ used as the fitting parameters. Merits of using the sapphire resonators with short-circuited parallel plates are discussed.

Keywords: penetration depth, superconductor film, dielectric resonator, short-ended