Fluctuation conductivity of SmFeAsO_{0.85} and SmFeAsO_{0.8}F_{0.2} single crystals

Hyun-Sook Lee^a, Jae-Hyun Park^a, Jae-Yeap Lee^a, Ju-Young Kim^b, B. K. Cho^b, Chang-Uk Jung^c, and Hu-Jong Lee^a

^aDept. of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea ^bDept. of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea ^cDept. of Physics, Hankuk University of Foreign Studies, Yongin, Gyeonggi 449-791, Korea

We have synthesized superconducting single crystals of SmFeAsO_{0.85} and SmFeAsO_{0.8}F_{0.2} by a self-flux method, of which growth pressure and temperature were 3.3 GPa and 1350–1450 °C, respectively. The lattice constants are estimated to be a=3.909 Å and c=8.435 Å from synchrotron-irradiated X-ray diffractometry. High-resolution transmission electron microscopy images reveal a well-defined tetragonal structure with alternating SmO and FeAs layers along the c-axis. Temperature-dependent transport measurements showed the critical temperature, T_c , at ~50 K for SmFeAsO_{0.85} and ~42 K for SmFeAsO_{0.8}F_{0.2} with a sharp superconducting transition width of 0.5 K. Applied with perpendicular magnetic field along the c-axis, the fluctuation conductivity, $\sigma_{\rm fl}$, was obtained from $\sigma_{\rm fl}=1/\rho(T)-1/\rho_{\rm fl}(T)$, where $\rho(T)$ is the in-plane resistivity and $\rho_{\rm n}(T)$ is the normal-state resistivity, linearly extrapolated from high temperature region above $2T_c$. Respective scaling behavior of $\sigma_{\rm fl}$ from SmFeAsO_{0.8}5 and SmFeAsO_{0.8}F_{0.2} single crystals was in good agreement with a two-dimensional (2D) theory suggested by Ullah and Dorsey [1], which confirms 2D nature of superconductivity in these iron-based compounds.

Keywords: FeAs-based superconductor, fluctuation conductivity, superconducting dimensionality

[1] S. Ullah and A. T. Dorsey, Phys. Rev. B 44, 262 (1991); ibid., Phys. Rev. Lett. 65, 2066 (1990).