유전자 알고리즘을 이용한 양방향 원격제어시스템의 동기화

Synchronization of Bilateral Teleoperation System using Genetic Algorithm

김병연, Byeongyeon Kim, 안효성, Hyosung Ahn

요약^{~~}본 논문은 유전자 알고리즘을 이용하여 네트워크의 시간지연을 고려한 양방향 원격제어시스템의 동기화를 제시하고 있다. 일반적으로 양방향 원격제어시스템에서는 안정성 및 투명성을 주 목표로 한다. 마스터와 슬레이브 사이에 시간지연이 존재하는 경우 시스템의 안정성을 보장하고, 유전자 알고리즘을 이용하여 동기화 제어법칙의 파라미터를 최적화하고자 한다.

Abstract This paper presents synchronization of bilateral teleoperation system with time delay using genetic algorithm. In general, bilateral teleoperation system has two main goals; stability and transparency. In the presence of time delay between the master and the slave, we guarantee stability, and optimize the parameter of synchronization control law using genetic algorithm.

핵심어: Synchronization, Teleoperation, Genetic algorithm,

본 논문은 2008 년도 지식경제부 및 정보통신연구진흥원의 대학 IT 연구센터 육성·지원사업의 연구로 수행되었음. (IITA-2008-C1090-0804-0002)

*주저자 : 광주과학기술원 기전공학과 석사 과정; e-mail: byeongyeon@gist.ac.kr

**공동저자 : 광주과학기술원 기전공학과 교수 ; e-mail: hyosung@gist.ac.kr

1. 서론

원격제어시스템에서 가장 중요한 목표는 시스템의 안정성 및 투명성이다. 특히 원격수술로봇의 경우에는 슬레이브 로봇에서 전해지는 힘을 시술자에게 전달하는 것이 중요하다. 이러한 힘반향 원격제어시스템에서는 네트워크의 시간지연으로 인해 시스템이 불안정하게 되며 성능도 감소하게 된다. 이에 2-포트 네트워크[1,2] 및 4-채널[3]을 기반으로 한 연구 및 마스터와 슬레이브 사이의 상호 동기화[4-7]에 관한 여러 연구가 진행되었다. 본 논문에서는 시간지연이 있는 원격제어 시스템의 안정성 및 투명성, 즉 마스터와 슬레이브의 상호 동기화를 위한 제어기를 설계하고, 유전자 알고리즘을 이용하여 제어기의 파라미터를 최적화하고자 한다.

2. 본론

2.1 시스템 모델

일반적으로 n-자유도의 마스터, 슬레이브 로봇의 동역학 식은 다음과 같이 주어진다.

$$\begin{split} & M_{m}(q_{m})\ddot{q}_{m} + C_{m}(q_{m},\dot{q}_{m})\dot{q}_{m} + g_{m}(q_{m}) = F_{h} + \tau_{m} \\ & M_{s}(q_{s})\ddot{q}_{s} + C_{s}(q_{s},\dot{q}_{s})\dot{q}_{s} + g_{s}(q_{s}) = \tau_{s} - F_{e} \end{split}$$

시간지연을 고려한 마스터와 슬레이브 로봇의 동기화 오 차는 다음 식으로 나타내어진다.

 $e_{m}(t) = q_{m}(t - T) - q_{s}(t)$ $e_{s}(t) = q_{s}(t - T) - q_{m}(t)$ (2)

양방향 원격제어시스템에서 동기화는 다음과 같이 정의될 수 있다.

 $e_m(t) \to 0, e_s(t) \to 0 \text{ as } t \to \infty$ (3)

2.2 제어기 설계

마스터와 슬레이브 로봇의 동역학에서 모델의 불확실성을 고려하면 제어 입력은 다음과 같이 나타낼 수 있다.

$$\tau_m = -\hat{M}_m(q_m)\lambda \dot{q}_m - \hat{C}_m(q_m, \dot{q}_m)\lambda q_m + \hat{g}_m(q_m) - F_m$$

$$\tau_s = -\hat{M}_s(q_s)\lambda \dot{q}_m - \hat{C}_s(q_s, \dot{q}_s)\lambda q_s + \hat{g}_s(q_s) + F_s$$
(4)

 $\hat{M}_i, \hat{C}_i, \hat{g}_i \ (i = m, s)$ 는 추정된 파라미터를 나타내며 선형 파라미터화를 이용하면 식(1)은 다음과 같이 나타낼 수 있다.

 $M_{m}\dot{r}_{m} + C_{m}r_{m} = Y_{m}\tilde{\theta}_{m} + F_{h} + F_{m}$ $M_{s}\dot{r}_{s} + C_{s}r_{s} = Y_{s}\tilde{\theta}_{s} + F_{s} - F_{e}$ (5)

 $r_i = \dot{q}_i + \lambda q_i$ (i = m, s) 는 양방향 원격제어시스템의

 수동성을 보장하기 위한 피드백 안정화 부분으로

 마스터와 슬레이브의 새로운 출력신호가 된다.

 Y_i (i = m, s) 는 로봇 회귀행렬, $\tilde{\theta}_i = \theta_i - \hat{\theta}_i$ (i = m, s) 로

 주어지고 여기서 $\tilde{\theta}_i$ (i = m, s) 는 추정된 파라미터 벡터를

 나타낸다.
 파라미터 적응법칙은

 $\hat{\theta}_i = \gamma Y_i r_i$ $(i = m, s; \gamma > 0)$ 와 같다.
 마스터와 슬레이브의

 $e_m = r_m(t - T) - r_s(t)$ 새로운 출력에 따른 동기화 오차는

 $e_s = r_s(t - T) - r_m(t)$ (6)

동기화 제어법칙은 다음과 같다.

$$F_{i}(t) = K_{P}e_{i} + K_{I} \int e_{i}dt + K_{D}\dot{e}_{i} \quad (i = m, s)$$
(7)

본 논문에서는 식(7)의 K_P, K_I, K_D 파라미터를 최적화하기 위해서 유전자 알고리즘을 사용하고자 한다.

그림 1. 유전자 알고리즘 2.3 유전자 알고리즘에 의한 최적화

유전자 알고리즘은 자연환경에서의 자연적 선택과 유전의 메커니즘을 바탕으로 한 탐색 알고리즘으로, 주어진 문제에 대하여 후보 해의 공간을 확률적으로 탐색하여 최적 해를 찾을 수 있다. 유전자 알고리즘은 그림 1 과 같이 선택, 교배, 돌연변이의 세 연산자를 가진다. 선택은 적합도에 따라 최적 해를 선택하게 되며, 교차는 두 해의 일부분을 교환, 돌연변이는 탐색에 랜덤 요소를 부여하여 새로운 해를 생성하는 역할을 한다. 이에 제어시스템에서의 파라미터 추정이나 최적화에 사용될 수 있다[8-10].

2.4 시뮬레이션

시뮬레이션은 다음과 같이 1-자유도의 마스터, 슬레이브 로봇을 기반으로 하였다.

$$M_m \ddot{q}_m = F_h + \tau_m \tag{8}$$
$$M_s \ddot{q}_s = \tau_s - F_e$$

유전자 알고리즘에서 동기화를 위한 제어 파라미터의 탐색공간은 $K_P, K_I, K_D = [0, 30; 0, 30; 0, 5]$ 로 설정하였고 적합도 함수는 식(6)의 동기화 오차의 합으로 이루어진 누적제곱오차로 정의하였다. 선택은 순위선택방법으로 하고, 교차확률은 60%, 돌연변이확률은 5%로 설정하였다.

본 논문에서는 마스터와 슬레이브의 동기화를 위한 제어법칙의 파라미터를 최적화하기 위해 유전자 알고리즘을 이용하였다. 시뮬레이션 결과에서 보듯이 마스터와 슬레이브 로봇의 동기화 및 유전자 알고리즘에 의한 제어 파라미터의 최적화도 좋은 성능을 보여주었다.

참고문헌

[1] R.J. Anderson and M.W. Spong, "Bilateral control of teleoperators with time delay", Decision and Control, pp.167-173, 1988.

 [2] G. Niemeyer and J.J.E. Slotine, "Stable adaptive teleoperation", IEEE Journal of Oceanic Engineering, Vol. 16, no. 1, pp.152-162, 1991.

[3] D.A. Lawrence, "Stability and transparency in bilateral teleoperation", IEEE Trans. on Robot. Automat. Vol. 9, no. 5, pp.625-637, 1993.

[4] N. Chopra and M.W. Spong, "Output synchronization of nonlinear systems with time delay in communication", Proc. of the $45^{\rm th}$ IEEE Conference on Decision and Control, pp.4986-4992, 2006.

[5] N. Chopra and M.W. Spong and R. Lozano, "Synchronization of bilateral teleoperators with time delay", Automatica, Vol. 44, no. 8, pp.2142-2148, 2008.

[6] N. Chopra and M.W. Spong, "On synchronization of networked passive systems with time delay and application to bilateral teleoperation", Annual Conference of Society of Instrument and Control Engineers of Japan, pp.6-10, 2005.

[7] H. Kawada and K. Yoshida and T. Namerikawa, "Synchronized control for teleoperation with different configurations and communication delay", 46th IEEE Conference on Decision and Control, pp.2546-2551, 2007.

[8] L. Jie and X. Jian-ying and W. Zheng-mao, "Design of disturbance rejection PID controllers for time delay system based on genetic algorithms", International Conference on Neural Networks and Brain, Vol.2, 2005.

[9] T. hachino and Z.J. Yang and T. Tsuji, "On-line identification of continuous time-delay systems using the genetic algorithm", Electrical Engineering in Japan, Vol. 116, no. 6, pp.115-126, 1996.

[10] D.S. Pereira and J.O.P. Pinto, "Genetic algorithm based system identification and PID tuning for optimum adaptive control", Proc. IEEE/ASME Interantional Conference on Advanced Intelligent Mechatronics, pp.801-806, 2005.

3. 결론