
MicroPost: 분산형 소셜 애플리케이션을 위한

효율적인 이벤트 통지 아키텍처의 설계

MicroPost: The Design of an Efficient Event Notification Architecture
for Distributed Social Applications

배준현, Joonhyun Bae*, 김상욱, Sangwook Kim**

Abstract Emerging social networking services provide a new paradigm for human­to­human
communication. However, these services are centralized and managed by single service provider. In
this paper, we propose MicroPost, a decentralized event notification service architecture for social
applications based on publish/subscribe model. In our design space, event brokers are structured as
an overlay network which provides the substrate of distributed peer­to­peer lookup service for
storing and retrieving subscriptions with hashed keys. Event clients interact with event brokers to
publish or subscribe social messages over the wide­area network. Using XML standards, we
present an efficient algorithm to forward events for rendezvous­based matching in this paper. In
our design space, the cost of routing is , where N is the number of event brokers,

ω is the number of meta­data obtained from event messages, and k is a constant, which is
selected by our design, to divide the identifier space and to conquer the lookup of given key.
Consequently, what we achieved is an asynchronous social messaging service architecture
which is decentralized, efficient, scalable, and flexible.

Keywords: Social Networking Service, Content­Based Publish/Subscribe, Structured Broker Overlay,
Distributed Hash Table, Rendezvous­based Matching and Routing Algorithm

1. Introduction

Emerging social networking services provide a new

paradigm for human­to­human communication. Such a

service, so­called microblogging, has become popular

as means of disseminating personal information to an

implicit group of people, e.g., Twitter, Jaiku, and

Pownce[1]. However, these services are centralized

and managed by single service provider. It means that

the communication is limited and controlled. Hence, it

is valuable to have an infrastructure for decentralized

social communication.

In this paper, we propose MicroPost, a novel event

notification service architecture for distributed social

applications based on publish/subscribe model. The

main idea of this paper is to exploit the expressive­

ness of Content­Based Publish/Subscribe[2­5] model

to enable human­to­human communication. In addition,

we aim to design a decentralized, efficient, scalable,

and flexible architecture for social messaging service.

Distributed Hash Table(DHT)[6,7] is our choice of

design to achieve efficient routing of subscriptions and

publications for rendezvous­based matching and notifi­

cations. Using XML­based event types, we also

achieve more flexible architecture which is able to be

extended to various application areas, i.e., photo­

sharing, collaborative learning, or large­scale peer­to­

peer auction, etc.

*주저자 : 경북대학교 전자전기컴퓨터학부 석사과정 e-mail: jhbae@cs.knu.ac.kr

**교신저자 : 경북대학교 전자전기컴퓨터학부 교수 e-mail: swkim@cs.knu.ac.kr

�H�C�I�2�0�0�9� 학술대회

�2�3�2

The main contribution of this paper is to introduce

an efficient algorithm for forwarding events for

rendezvous­based matching. With a global hash

function, we utilize the meta­data of event messages

for indexing and routing. In this paper, we show and

prove that the cost of routing is , where

N is the number of event brokers, ω is the number

of meta­data in event messages, and k is a

constant which is selected by our design.

This paper is organized as follows. In Section 2,

we review previous researches and existing solutions.

In Section 3, we describe the system model in our

design space. In Section 4, we present an efficient

algorithm for routing events for rendezvous-based

matching. In Section 5, we evaluate our approach with

regard to the efficiency of routing algorithm. Finally,

we conclude this paper in Section 6.

2. Related Work

In this section, we review previous researches in

terms of content­based publish/subscribe model and

distributed hash table. Then, we investigate existing

solutions related to our approach.

Content­based Publish/Subscribe has been an active

research area[2­5]. SIENA[2] provided a fundamental

contribution to this area. It is based on a brokers’

network architecture, and the subscription routing is

based on the filtering algorithm exploiting containment

relationships. HERMES[3] is a distributed event­based

middleware. It utilize rendezvous­based routing over

an overlay network. Especially, its event model is

designed by XML Schema[13], and the subscription

model is represented by XPath[14]. These XML­based

modeling conforms to our approach in terms of

flexibility. SCRIBE[5] is built on a structured overlay

network infrastructure, i.e., Pastry[7]. It allows an

efficient and scalable message matching and routing in

application layer. However, its subscription model is

not content­based but topic­based. Because the topic­

based subscription model is less expressive, it is not

appropriate for our requirements. REBECA[4] is an

object­oriented notification service framework which

provides a generic routing engine. It is used in many

research projects to support configurable systems,

mobility of users, and security aspects. Particularly,

supporting mobile client is a highly valuable feature of

our targeted architecture.

To improve the efficiency and scalability of

content­based pub/sub systems, many peer­to­peer

approaches are proposed[8­9]. These approaches are

mainly based on Distributed Hash Table[6,7], which is

a substrate of structured peer­to­peer overlay

network. The advantages of DHT­based structured

P2P overlay, such as decentralization, scalability,

fault­tolerance, and self­organization, are essential in

our design space. Among various DHT systems, we

enhanced Chord[6] because of its simplicity and

popularity.

The matching problem is also an important part in

our design space. Although there are numerous

algorithms[10­12], we feel that none of the various

algorithms solves our requirements in the literature of

social messaging. In order to realize our approach, we

need string­attribute­friendly matching and routing

algorithms. Although two researches, DHTStrings[11]

and PastryStrings[12], cope with similar problems,

these researches focus on the problem of rich

queries. Therefore, we devised a new algorithm for

matching and routing content in the context of

folksonomies, so­called social­tagging[1]. We argue

that this approach is highly effective in our targeted

service architecture, where information is controlled

by human beings.

3. System Model

In this section, we describe the MicroPost, our

proposed architectural model of social messaging

service based on publish/subscribe paradigm.

3.1 System Architecture

In our approach, we assume that all the people act

as both publishers and subscribers. That is to say,

anyone can produce a new message in the system and

consume messages created by other people.

Figure 3.1 shows the components of event

notification service infrastructure for the MicroPost. It

is composed of event clients and event brokers. An

�2�3�3

Figure 3.1 Event Notification Service Infrastructure

event client is a user interface for people to issue

and fetch events to and from the system. An event

broker is a system interface for brokering the

events to and from either the event client or the

other event broker. We assume that all the event

brokers are distributed over the wide­area DHT

overlay network. When a subscriber submits a

subscription, it is forwarded to a rendezvous node

by the event broker he/she is connected with. A

publication, which is issued by a publisher, is also

routed to a rendezvous node for matching with

subscriptions, and is notified to the subscribers

who are interested in.

Figure 3.2 shows the architectural design of our

system. In physical network layer, we divide the

network connections into two types. The connection

among brokers is regarded as reliable, and the

connection between client and broker is deemed as

being connected intermittently, taking mobile clients

into accounts. In overlay network layer, the topology

of event brokers' network is structured on the basis

of Chord, one of the most popular DHT system. The

publish/subscribe layer provides interfaces and

libraries to application layer allowing the functionality

of publishing or subscribing social messages. It is

desirable for various applications to appear in the

application layer on top of the pub/sub service layer.

3.2 Event Model

An event type τ is a structure of an application­

specific event defined by XML Schema[13]. XML

Schema Language provides a means for defining the

structure, content, and semantics of XML documents.

Figure 3.2 Hierarchical System Architecture

An event ε is an XML document that conforms to

the event type τ. A publisher can publish an event

by submitting an XML document to the system.

A subscriber can subscribe selected events by

specifying his/her interests according to the structure

of event type. A subscription σ is expressed by

XPath[14]. XPath is an XML Path Language for

addressing parts of an XML document, providing basic

facilities for manipulation of strings, numbers and

boolean values. A subscription can be represented by

a path expression that returns a boolean value. For

example, Figure 3.3(a) and 3.3(b) show an example

of subscription and publication messages in XML

format.

Event brokers store all the subscriptions collabo­

ratively. Whenever an event broker receives a new

event from an event client, it should find the

subscribers interested in the event. An event ε

matches a subscription σ, if and only if the boolean

path expression of σ returns true when it compiled on

ε. After the system finds the interested group of

people, it notifies the event to the subscribers. Figure

3.4 depicts the process of matching an event with

subscriptions in rendezvous­based routing.

3.3 Social Messaging Model

In our design space, social messaging is about

human­to­human communication. Let

     be a set of event brokers, and let

   be a set of people who is connected

to an event broker with an event client. Any

person , who is connected to , which is denoted

by ⇒, should have the functionality of

publishing and subscribing messages to and from

�2�3�4

any other person in the network, i.e.,

∀⇒ ∈∈ .

(a) publication message

(b) subscription message

Figure 3.3 An example of events in XML format

We categorized the model of communication as the

following:

ⅰ) One­to­One Messaging: When a ⇒

wants to subscribe the messages from ⇒, 

submits a subscription  containing the predicate

of XPath expression like "//from[text()='']." On

the other side, ⇒ can receive all the messages

to herself by specifying a predicate like

"//to[text()='']."

ⅱ) Group Messaging: A group of people also can

communicate in the same manner as one­to­one

messaging. With a virtual identifier, , all the

members of    can subscribe the events

directed to , with a predicate of "//to[text()='

']." Then, anyone can send a message to this group

by specifying the identifier of  as a recipient in

a message.

ⅲ) Interest-based Messaging: In our messaging

model, by adding <tag> element to an event type, we

can share many kind of information, i.e., urgent news,

personal opinions, or curious questions, with wide

variety of people who have the same tastes as us. A

person can subscribe selected messages from all the

people by specifying the constraints on the tags, i.e.,

user­defined meta-data of the messages. As an

example, when a ⇒ is interested in all the

messages related with "Social Messaging," she would

subscribe with a predicate like the following: //tag[

text()='Social' and text()='Messaging']. Then, when

⇒ publishes a message tagged by 'Social,'

Figure 3.4 An example of notification

'Messaging,' and 'Service,' ⇒ is notified with

the message.

4. Matching and Routing

In this section, we present algorithms for routing

subscriptions and publications for rendezvous-based

matching over a structured broker overlay network.

4.1 Matching in an Event Broker

The problem of matching an event with a group of

subscriptions is formally stated as follows:

Given an event ε and a set of subscriptions S, find

a subset S' of S which fulfills the condition that all

the elements of S' cover the given event ε, namely:

′   ∈    (1)

In naive approach, we can test if ε matches σ for

each subscription in S. Then, the cost of matching is

  intuitively. It is too expensive for

large­scale social applications, where the number

of subscriptions is the same as that of Internet

users. Although there are numerous efficient

matching algorithms[10], we take a different

approach on the basis of our assumptions: The

content itself contains useful information to match

with certain subscriptions.

As explained above, we already defined that the

matching in our design space is to test if the

predicate of boolean XPath expression, specified by

the subscribers, returns true. Hence, to minimize the

candidate subscriptions, we can classify subscriptions

�2�3�5

by hashing them with the values of text nodes

appeared in the predicates.

(a) Subscription Forwarding

(b) Publication Forwarding and Matching

Figure 4.1 Routing and Matching Process

Since the three types of element nodes(<from>,

<to>, and <tag>) are tested for filtering messages

in our previous example, the system should push

subscriptions into the hash table according to the

hashvalues in the predicates of path expression. When

a new message arrives at a broker, the broker checks

only the subscriptions in the buckets of the hash

table according to the hash values of the text nodes

in that message.

With a consistent hash function, like SHA­1, we are

guaranteed that there are few, if any, collisions.

Hence, for each text node in an atomic subscription

containing equality predicates, the cost of matching is

O(1). Even if there are several subscriptions on the

same bucket in the case that several subscriptions

have the same value in their predicates, the

cardinality of S which is to be tested is small enough,

that is to say,  ≈ ′ .

4.2 Rendezvous­based Matching

New events rendezvous with matching subscriptions

in the nodes which are responsible for the hash keys

of values in its own text nodes of XML document.

Event brokers collaborate to store subscriptions and

to process new events. When a new subscription

arrives at a broker, it forwards the subscription to

other brokers which are responsible for this

subscription.

Our subscription forwarding strategy depends on

the fact that a subscription may have several hash

keys from the predicates of its XPath expression.

Hence, a composite subscription which has several

values in its predicates should be forwarded through

many ways. Figure 4.1(a) shows that a composite

subscription identified by sID with two identifiers of

t2 and t3, denoted by <sID, (t2, t3)>, is forwarded

to two nodes respectively.

After a subscription is stored in rendezvous nodes,

a broker receives an event from a client and parses it

to extract the values of its text nodes from XML

document. Then, it also forwards the message to the

rendezvous nodes. The rendezvous broker tests all the

local subscriptions to find the S' i.e., a set of

subscriptions covering received event. Figure 4.1(b)

shows that an event identified by eID, with three

idenfifiers of t1, t2, and t3, is forwarded to three

nodes respectively. In this case, the two nodes in the

node of 5 and 34 find the subscription successfully,

and the matching in the node of 27 fails.

Once the matching subscriptions are found, the

broker should add the event to the queues of the

subscriptions at the brokers of subscribers. The

events in the subscription queue are consumed by the

event client when the owner of the subscription is

connected to the system.

4.3 Lookup Protocol

Although the original Chord paper[2] shows that

the average path length is about (1/2), it

scales lenearly along with the number of nodes.

Hence, we enhanced the performance of lookup

operation for the scalability of the MicroPost.

Like Chord, Micropost also assigns keys to nodes

with consistent hashing. The hash function assigns an

m­bit identifier to each event broker using SHA­1 as

a base hash function. Hence, the size of identifier

�2�3�6

space M is 2m=2160, where m=160.

To accelerate lookups, we redesign the routing

table of traditional Chord system. Instead of finger

Figure 4.2 An example raking from s with k=4, d=4

Notation Definition

rake teeth, k
the number of rake teeth to divide the key
space into k subspaces and to conquer the
lookup of given key

rake depth, d the depth of raking, ≤≤⌊⌋

rake[d].tooth[i]

the first node on the ring of key space that

succeeds ∙
  ≤≤,

where s is the hash key of raking node
and d is the depth of raking

Table 4.1 Definitions of Rake Table

table, we defined rake tables as shown in Table

4.1. In our design space, a node has better notion

of closer nodes on the ring of identifier space.

Figure 4.2 shows an example of raking from node

s, with given number of k=4 and d=4.

The selection of k, the number of rake teeth, and

d, the number of rake tables is the most important

choice for enhancing the performance of lookup. In

the case of k=2, and d=m, the identifier space is

divided into a half size of subspace to the depth of m

raking tables. Although this is exactly equivalent with

the traditional Chord's finger table, it does not looks

like being so efficient. Hence, we will investigate the

golden section of k and d in the following section.

First of all, let us consider the impact of rake

teeth k. If we choose an arbitrary value of k, a

raking table of one­depth divides the entire key space

into k subspaces sized by 2m/k. Recursively, we can

proceed to the maximum depth of raking, until the

size of subspace becomes lesser than k. From this

recognition, we induce the following theorem:

Theorem 1. With a given number of rake teeth k,

the maximum depth of raking D is the floor of

 in N­node network i.e., ⌊⌋.

Proof. Let k be the number of rake teeth, and N

be the number of nodes. The first rake table of

one­depth divides the entire identifier space into

 subspaces, where M is the number of total

identifier space. With high probability, it also

divides the number of nodes to be covered as the

same proportion, i.e., . Recursively, the raking

table of d­depth divides the uncovered nodes into

. As the maximum depth of raking D does not

goes bigger than an integer which fulfills the

following condition:   , i.e.,  

⇒ . Hence, D is a ceiling of ­1,

and finally, we get the equation: ⌊⌋.

The probability that the raking with k divides the

nodes into  uniformly, is discussed and proved

in [6]. ■

On this finding, we have the deterministic size of

routing table as the following lemma:

Lemma 1. With a given number of rake teeth k in

N­node network, the number of states in rake tables

T is ⌊⌋ .

Proof. Again, let k be the number of rake teeth.

Then, the number of raking tables is resolved by the

equation in Theorem 1, and is the same as the

number of maximum depth of raking D. Since the

range of subspace divided by raking node itself is

covered by the nested rake tables, we need to

maintain the notion of k­1 neighbors. Hence, the total

number of state in all the rake tables is T=

 =⌊⌋. ■

Now that the size of routing table is deterministic,

we find that the performance of lookups is also

deterministic in our design space, with high

probability. We can state the asymptotic cost of

lookups as the following:

Theorem 2. With a given number of rake teeth k,

the average path lengths to find a node responsible

�2�3�7

for a key is  with the notion of

 neighbors in N­node network.

0

1

2

3

4

5

6

7

3 4 5 6 7 8 9 10 11 12

number of nodes(2n)

av
er

ag
e

pa
th

 le
ng

th

Traditional Chord
MicroPost(k=8,D=16)
MicroPost(k=16,D=16)

Figure 5.1

0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

3 4 5 6 7 8 9 10 11 12

path length
pd

f o
f p

at
h

le
ng

th

Traditional Chord
MicroPost(k=8,D=16)
MicroPost(k=16,D=16)

Figure 5.2

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8

number of meta-data

av
g.

 n
o.

 o
f p

ac
ke

ts Upper 10% Avg.
Total Avg.
Lower 10% Avg.

Figure 5.3

k D T APL(N=212) k D T APL(N=212)

2 32 32 6.26702 32 6 186 3.24751

4 16 48 5.02908 64 5 315 2.79897

8 10 70 4.39697 128 4 508 2.50793

16 8 120 3.58154 256 4 1020 2.45554

Table 5.1 Rake tables and average path lengths(M=232)

Proof. Suppose that a node maintains the states of

 neighbors in its rake tables. Let k is

the number of rake teeth. At each hop of routing,

the number of nodes is divided into  according

to the same reasoning in Theorem 1. As the depth

of raking d increases, the number of nodes to be

covered diminishes to . When the number of

nodes to be covered is lesser than k, it is

guaranteed to find the successor of given key by

the definition shown in Table 1. Hence, the average

path lengths converges into the number of raking

tables which is determin‐istic by Theorem 1. i.e,

 =. ■

Since the cost of lookup operation is verified to be

 in N­node network, it is trivial to prove

that the number of packets required to forward

events for rendezvous­based matching is

, where ω is the number of meta­data

obtained from event messages. i.e., ×=

.

5. Evaluation

In this section, we evaluate the efficiency of lookup

operation by simulation.

We first consider the relationship between the

average path lengths and the size of routing table.

Table 5.1 shows the variation of average path lengths

according to the size of raking teeth and raking depth.

We can see that the average path length(APL) is

shorter than the (1/2)log2N, even though the size of

routing table is smaller than m=160. Hence, we can

argue that the cost of routing in our design has better

performance with lesser states about neighbor nodes.

It halves the average path lengths of Chord only with

3/4 neighbors, where k=16 and D=8 in the Table 5.1.

To understand the impact on the performance, we

conducted an experiment which shows the average

path lengths while the number of nodes increases.

Figure 5.1 shows the result of our experiment. We

changed the number of nodes from 23 to 212, and

estimated the average path lengths. As expected, our

design shows significantly better performance over

traditional Chord with lessor neighbors.

In the next, we estimated the probability of

average path lengths. Figure 5.2 shows the probability

density function(PDF) of lookups in a network of

N=212. It also shows that the enhancement of lookup

performance is not skewed but uniform. Hence, we

can argue that the total routing cost in whole network

diminishes exponentially.

Finally, to see the variation of routing cost with

the number of meta­data, we conducted an experiment

with composite subscriptions. In a network of N=212,

we varied the number of indexes in events from 1 to

8. Figure 5.3 shows that the average number of

�2�3�8

packets in upper 10% path lengths, in lower 10%

path lengths, and in total path lengths. The number of

packets in total APL converges into , as

expected in our asymptotic analysis in previous

section.

6. Conclusion

In this paper, we proposed a novel event

notification service architecture for social applications

based on asynchronous content­based publish/subscribe

model. With the standards of XML Schema and XPath

for defining event and subscription model, we exploit

the expressiveness of CBPS as means of human­to­

human communication.

In our design space, we adopt DHT as a substrate

of decentralized and scalable broker overlay network

for forwarding the social messages over the wide­area

network with rendezvous­based matching.

In particular, we enhanced the performance of

routing algorithm on top of Chord. The algorithm

proposed in this paper halves the average path

lengths of traditional Chord only with 3/4 entries of

routing table. In the result, the cost of routing for

forwarding and matching is  in N­node

network.

In the future work, we have a plan for solving the

skewness of tags which has the property of Zipfian

distribution in real world application of MicroPost.

References

[1] A. Java, X. Song, T. Finin, and B. Tseng, "Why

we twitter: Understanding microblogging usage

and communities," Proc. of the 9th WebKDD and

1st SNA­KDD 2007, San Jose, CA, USA, pp.

56­65, 2007.

[2] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf,

"Design and Evaluation of a Wide­Area Event

Notification Service," Foundations of Intrusion

Tolerant Systems (OASIS'03), 2003.

[3] P. Pietzuch and J. Bacon, "Hermes: A Distributed

Event­Based Middleware Architecture," Proc. of

the 22nd International Conference on Distributed

Computing Systems Workshops (ICDCSW '02),

2002.

[4] G. Mühl, A. Ulbrich, K. Herrmann, and T. Weis,

"Disseminating Information to Mobile Clients

Using Publish­Subscribe," IEEE Internet

Computing, vol. 8, no. 3, pp. 46­53, May 2004.

[5] A. Rowston, A. Kermarrec, M. Castro, and P.

Druschel, "Scribe: The design of a large­scale

notification infrastructure," Proc. of the 3rd

International Workshop on Networked Group

Communication(NGC2001), 2001.

[6] I. Stoica, R. Morris, D. Liben­Nowell, D. R.

Karger, M. F. Kaashoek, F. Dabek, and H.

Balakrishan, "Chord: a scalable peer­to­peer lookup

protocol for internet applications," IEEE/ACM

Transactions on Networking, vol. 11, pp. 17­32,

Feb. 2003.

[7] A. Rowstron and P. Druschel, "Pastry: Scalable,

decentralized object location and routing for

large­scale peer­to­peer systems," IFIP/ACM

International Conference on Distributed Systems

Platforms (Middleware), Heidelberg, Germany, pp.

329­350, Nov. 2001.

[8] W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and

A. Buchmann, "A peer­to­peer approach to

content­based publish/subscribe," Proc. of the 2nd

international workshop on distributed event­based

systems, San Diego, CA, USA, pp. 1­8, 2003.

[9] D. Shi, J. Yin, Z. Wu, and J. Dong, "A

Peer­to­Peer Approach to Large­Scale

Content­Based Publish­ Subscribe," Proc. of the

2006 IEEE/ACM international conference on Web

Intelligence and Intelligent Agent Technology,

Washington, DC, USA, pp. 172­175, 2006.

[10] F. Fabret, F. Llirbat, J. Pereira, and D. Shasha,

"Efficient matching for content­based

publish/subscribe systems," Technical Report,

INRIA, 2000.

[11] I. Aekaterinidis and P. Triantafillou, "Internet

scale string attribute publish/subscibe data

networks," Proc. of the 14th ACM international

conference on Information and knowledge

management, Bremen, Germany, pp. 44­51, 2005.

[12] I. Aekaterinidis and P. Triantafillou,

"PastryStrings: A Comprehensive Content­Based

Publish/Subscribe DHT Network," Proc. of the

26th IEEE International Conference on Distributed

Computing Systems(ICDCS'06), pp. 23­23, 2006.

[13] W3C. "XML Schema Part 0: Primer," W3C

Recommen­ dation, World Wide Web Consortium,

May 2001.

[14] W3C. "XML Path Language(XPath) Version 1.0,"

W3C Recommendation, World Wide Web

Consortium, Nov. 1999.

�2�3�9

