
A Novel Web-based Management of Networked Display for
Advanced Collaboration Environment

Vinay Ramachandra*, Sangwoo Han**, Changhyeok Bae***, JongWon Kim****

Networked Media Lab, Gwangju Institute of Science and Technology (GIST)

Abstract Not many years ago, people found the contemporary technology expensive

and difficult to use in collaborative type of meetings. Today, with the technology

advanced to high standards and accessible at cheaper price, its adaption is becoming

more and more ubiquitous with wide range of applications. Today’s meeting rooms

are not just plain old telephone systems with microphones and speakers. Today’s

meeting rooms are smart and intelligent. They can identify the participants; they

can provide natural view of remote participants; they can proactively manage

resources for collaboration and so on. More effective collaboration is possible with

deployment of devices like high-definition cameras, advanced displays, sensors,

gigabit networks, trackers, pointers, and high-end audio devices. Devices alone are

not enough in the meeting rooms. We need software infrastructure to manage the

devices and meeting contexts. One such software infrastructure is SMeet, a Smart

Meeting space, which we have developed to provide an effective multi-party remote

collaboration environment. Networked display systems are used in such advanced

collaboration environment for better visualization. In this paper we discuss a novel

approach to control and manage networked display systems in SMeet environment.

핵심어: ubiquitous computing, networked display, Web 2.0, collaboration, services

*first author: GIST, School of Information and Mechatronics; e-mail: vinay@nm.gist.ac.kr

**co-author: GIST, School of Information and Mechatronics; e-mail: swhan@nm.gist.ac.kr

***co-author: GIST, School of Information and Mechatronics; e-mail: chbae@nm.gist.ac.kr

****professor: GIST, School of Information and Mechatronics; e-mail: jongwon@nm.gist.ac.kr

Acknowledgment - This work was supported by the IT R&D program of MKE/IITA [2008-F-029-01,

Development of e-Organ System based on Cyber Computing] and IT Research Center support program of

MKE/IITA [grant number IITA-2008-C1090-0801-0017].

1. Introduction With the recent advances in ubiquitous computing

environment there have been ongoing efforts to provide

�H�C�I�2�0�0�9� 학술대회

�2�2�1

a scalable and elegant multi-party collaboration

solution. SMeet [1], being one such solution, offers a

platform for natural sharing of different types of

contents like visual data (videos and presentations),

audio (conversation) and user actions (mouse gestures)

among remote parties. Depending on the user

requirements, SMeet facilitates customization of

meeting space for multi-group interaction. Under

SMeet environment, each meeting room is

conceptualized as a meeting node or simply called

‘SMeet node’. In collaboration environment there

can be multiple SMeet nodes present, geographically

separated. In such advanced collaboration environments

there can be different types of display devices present,

using which participants can view and share visual

elements over.

Devices such as networked tiled display, plasma

display, projector display...etc are a common scene in

advanced collaboration environments. These display

devices are networked and clustered for seamless

visualization. Many applications are designed to display

contents over these display devices like media

streaming programs, desktop sharing programs and

image viewing programs and so on. Managing the

whole display infrastructure is an important issue.

Complex user operations must be simplified, ignoring

which, can lead to operator problems and user

dissatisfaction rendering the meeting cumbersome and

ineffective. It should also be made intuitive and easy-

to-use so that first time users should not find any

difficulty in handling the display systems and display

applications.

To tackle this issue we have designed and developed

a web-based display management tool using novel

techniques. Through this paper we show how this tool

greatly simplifies the management of display systems

and display applications in SMeet nodes. The main

objective of this work is to improve the users’ quality

of experience (QoE) in advanced collaboration

environment like SMeet.

The rest of the paper is organized as follows.

Section 2 gives a prelude to the proposed solution from

software perspective. Section 3 discusses the high-

level view of web-based display management tool. It

also presents the software architecture of tool in detail.

Section 4 briefly describes the implementation and

evaluation part. Section 5 talks about a related work

and Section 6 conclude the paper by providing a peek

into future steps.

2. SMeet

Before discussing about the tool itself, let us have a

look at two important components of SMeet software

stack; ‘SMeet Mediator’ and ‘SMeet One Display’

(SMOD).

2.1 Mediator

SMeet is designed based on service-oriented design

principles. As such, it is composed of different kinds of

services offering different functionalities for end user.

When multiple nodes are involved we need a mechanism

to coordinate communication among remote services.

Mediator is exclusively used to perform this task. It

manages view information, conducts matching among

services and coordinates service level agreements.

The web-based display management tool depends on

mediator services to exchange messages with devices or

software elements in remote SMeet node. Fig. 1 shows

the high-level view of mediator from the perspective of

display management tool design. As shown in the

figure, each SMeet node consists of many devices used

for collaborative meeting.

Fig. 1: High level view of Mediator.

Mediator facilitates communication among SMeet

nodes’ devices which are active in collaboration

environment. Each SMeet node consists of a web server

which serves the requests of clients in that node.

Clients are basically users of display management tool.

While mediator acts as service repository and service

matchmaker, web server merely acts as initiator of

service operation in mediator. This way, complex

service operations and other details can be hidden from

web clients (users). Using web server and mediator

components, clients can easily perform local as well as

remote operations. For example, a meeting participant

in node 1 can instruct a server in node 2 to stream

video from one of its camera to node 1. Mediator is not

only used for facilitating communication among SMeet

nodes, it is also used for coordinating communication

�2�2�2

among internal components of SMeet (for example

SMOD) which is discussed in the next section.

2.2 SMeet One Display (SMOD)

SMOD is a middleware component to visualize data on

display systems. The data visualized can be high-

resolution image or video or any graphic content. The

display systems can include heterogeneous devices such

as projector display, networked tiled display, plasma

display. The important functionality of SMOD is to

stream graphic media across display systems for visual

sharing of data. Currently users can control display

objects using SMOD command line interface. Some

amount of time must be spent to learn all the

commands, which is undesirable for novice users.

Moreover, SMOD supports many applications like image

viewer, video streamer, desktop sharing and so on.

There are plans to support more applications in future.

Usage of these applications in SMeet environment

requires users to know all the command line

parameters which might differ across applications.

There is high probability of users making errors while

invoking applications via command line.

To alleviate these problems we provide a web-based

interface for display management. Through this

interface, users can easily use their intuition to

visually control the display objects without having to

spend much effort to learn to operate. The display

objects are represented as widgets in the browser.

Users unaware of SMOD usage can easily use this tool

without much hassle. Another important advantage of

these types of browser based applications is that it can

be run on any operating system which supports

common protocol like HTTP.

3. Web-based Display Management Tool

3.1 High-Level View

Fig. 2 illustrates the high-level view of our web-based

display management tool called SMOD Web Manager.

As of now, users rely on command line interface to

control the display objects on display systems. With the

new SMOD Web Manager, users can use their browsers

to operate various display applications in SMeet

environment. SMOD Web Manager is deployed in a web

server. Each SMeet node consists of one such web

server running SMOD Web Manager and users can

connect to it using HTTP URL. The basic function of

SMOD Web Manager is to process the requests from

clients (browser), map these requests to actions, and

forward all the actions to Display Manager. [Display

Manager is the main software module responsible for

managing and controlling display aspects of SMeet.]

These requests are invoked by using web elements like

buttons and widgets on the user interface. The user

requests can be as simple as moving or resizing the

visual object, or it can be as complex as invoking

streaming video application. SMOD realizes these

actions on to heterogeneous display systems like

networked tiled display, projector-based display,

plasma display and so on.

Fig. 2: High level view of web-based display management tool.

The important advantage, as seen from the high level

view, is that Display Manager and SMOD Web Manager

modules are deployed on different systems. This makes

it easier for web clients to connect to server without

requiring the knowledge of Display Manager system.

From the usage point of view it is important to

consider how users would interact with Display

Manager. Some users prefer to use existing command

line interface instead of web browser to control and

manipulate display objects. Any changes made such

way must be reflected on browsers used by other users.

Basically we need to update the properties of widgets

on browser. This kind of reverse synchronization (from

command line to browser) is achieved from our tool

using an asynchronous web technique which is

explained more in detail in implementation section.

3.2. Software Architecture

The display management tool architecture (see Fig.3)

consists of four main components: client user interface,

server programs, XML-RPC component and reverse

Ajax component. Client user interface provides users

with necessary graphical widgets to control display

systems and applications. These controls are translated

to requests and then sent to web server. Server

�2�2�3

programs residing in SMeet node’s web server

contains all the necessary methods to process and

forward client’s request to corresponding mediator

services.

The communication between web server and mediator is

through XML-RPC method which is an industry

accepted standard for distributed computing. The

mediator then forwards the request to Display Manager

module. The Display Manager module converts the

request to necessary operations over heterogeneous

display systems. After performing necessary operations

the reply is sent back to mediator, which in turn

forwards the replies to SMOD Web Manager residing in

web server. This reply is then broadcasted to all the

connected web clients using reverse Ajax technique. In

this technique the server pushes data to all the

connected clients. This way all other clients can view

the result of the operation performed. For example,

whenever a client resizes the application window, all

other clients can view the resize operation performed

automatically on their browsers.

Fig. 3: Architecture.

Client user interface is implemented using JavaScript.

Server programs are implemented as Java servlets and

Java Server Pages. Apache XML-RPC is used for

realizing XML-RPC based communication. Reverse

Ajax technique is implemented with the help of Direct

Web Remoting (DWR) tool [4].

4. Implementation and evaluation

4.1 Implementation

We have implemented the web-based display management
tool and deployed it in SMeet environment (see Fig.5).
Web 2.0 techniques such as AJAX is used to develop the
client side user interface module. AJAX technique helps in
creating faster interactive web applications. It is already
proving to be a good alternative for desktop applications.
The core technique of AJAX is that whenever client sends
HTTP request to server, server responds with a small
amount of data, rather than a complete web page.
JavaScript module in client user interface uses this data to
modify the page without refreshing the web page. This is
faster because less data is transmitted from server to client
and client’s browser has less work to do. jQuery AJAX
library [3] provides all the JavaScript elements used in our
web application. This library basically handles all the HTTP
requests and responses. This library provides APIs for
creating rich user interfaces meeting users need for faster
responsiveness. Advantage of using such library is that they
provide cross-platform browser support without any
distribution hassles. They help in reduced bandwidth
utilization by downloading only the data required.

 Server side interface consisting of services module is
implemented using Java language to maintain compatibility
with other components of SMeet. Services are basically
implemented in the form of Java servlets and Java server
pages (JSPs). Apache Tomcat web server environment is
used to host all the services.

We had explained earlier that the display objects can be
controlled in more than one way. Display objects can be
modified using command line interface or web browser or
mouse tracker [2]. There is a need to synchronize the state
of display objects across these interfaces. By state of
display object we mean its activation state, its position on
the display system, its size and so on. To synchronize the
state changes on web browser we have used server push
technique using direct web remoting tool. In this technique
(see Fig.4) the clients’ web browsers first subscribe to
Display Manager using their session.

Whenever user perform any operation, the request is sent
as HTTP request to mediator in asynchronous manner i.e.
requests do not wait for reply. The request is then further
processed and forwarded to Display Manager over TCP
network. Display Manager maintains a database to store
the states of display objects. The current state of display
object is then replied back to SMOD Web Manager and
finally it reaches client’s browser as HTTP reply. Based the
reply the client UI module updates the UI elements. This
whole process is made to run as background process i.e.
without requiring user intervention, using AJAX. The
asynchronous calls are made at regular intervals depending
on number of clients using the web application. With this

�2�2�4

capability, browsers can update the UI elements without
reloading the web page.

Fig. 4: Server push method

4.2 Evaluation

Our initial tests show that web-based applications greatly
simplify management of display systems and its
applications in collaboration environment. We have
successfully tested our web application on popular
browsers like Firefox, Internet Explorer and Opera. We
tested with clients located in two different SMeet nodes
using our web-based client interface. We found that the
delay between user operation and actual realization of
action on display devices was negligible. We plan to test
the tool with more number of clients located in multiple

SMeet nodes.

Fig. 5: Tiled display objects managed using the tool.

5. Related Work

A similar work can be found in Scalable Adaptive Graphics
Environment (SAGE) environment. The SAGE web UI [5]

offers a subset of features similar to our interface.

SAGE web UI is used as an alternative solution for

controlling SAGE. It provides basic features like

desktop sharing, application moving, resizing and

closing. One important feature of SAGE web UI is

users can connect to multiple sessions simultaneously.

Though it is useful, it is not clear from their work how

they resolve conflicts when multiple users

simultaneously access any application window. We plan

to resolve this conflict issue in our tool by including a

separate service which can integrate well with our

design. This is targeted as future work.

 An important drawback of SAGE web UI is that their

architecture requires a proxy server between web

server and SAGE application. This proxy server is used

to communicate data between web server and SAGE

application. Our solution does not depend on any such

redundant server and is aimed at reducing the resource

consumption. Another shortcoming of SAGE web UI

architecture is that it uses a combination of XML-RPC

and JSON encoding for data exchange. JSON

(JavaScript Object Notation) is used for data exchange

between web clients and web server whereas XML-RPC

is used for data exchange between web server and

SAGE proxy server. This kind of architecture requires

some special software modules in web server to take

care of conversion between XML-RPC and JSON. Our

solution makes use of XML-RPC based data exchange

between web clients, web server and Display Manager.

This has made the whole web communication process

lightweight and easy to implement.

6. Conclusion

In this paper we proposed a novel method to manage

visual objects on networked display systems. The tool

designed is a web-based tool built on top of SMeet’s

mediator to control display systems and display

applications. This paper also provides a glance of using

Web 2.0 techniques in this kind of multimedia collaboration

environment where users located remotely can

communicate and collaborate effectively. After performing

necessary tests we observed that the proposed work

simplifies the management and operation of display

applications used in conjunction with networked display

systems.

As part of future work we plan to test the tool for latency

and usability with substantial number of clients remotely

connected. The main focus of testing would be to reduce

the communication delay (if any). We also plan to provide

�2�2�5

more features in future which can prove useful to people

participating in the collaboration environment. We plan to

extend the service architecture to gather some real-time

performance data and display it along with application

details for user analysis. Integrating some simple web

applications like chat, file sharing, webcam view, session

manager and so on are also under pipeline.

References

[1] N. Kim, S. Han, and J. Kim, “Design of software

architecture for smart meeting space,” in Proc.

Pervasive Computing and Communications WS on

UbiWare, Mar. 2008.

[2] S. Ko, N. Kim, and J. Kim, “Design of interaction manager

supporting collaborative display and multimodal

interaction for advanced collaborative environment,” in

Proc.SPIE ITCOM, vol. 6777, 2007.

[3] jQuery, the JavaScript library. http://jquery.com/, 2008.

[4] Direct Web Remoting tool, http://directwebremoting.

org

[5] SAGE web UI. http://www.evl.uic.edu/cavern/sage

 /sagewebui/.

[6] S. Han, N. Kim, K. Choi, and J. Kim, “Design of multi-

party meeting system for interactive collaboration,” in

Proc. Communication Systems Software and

Middleware, Jan. 2007.

[7] H. C. Hong and Y. C. Chen, “Design and implementation

of a web-based real-time interactive collaboration

environment,” in Proc. The Ninth IEEE Workshop on

Future Trends of Distributed Computing Systems May

2003.

[8] L. Lei, and Z. Duan, “Integrating AJAX and web services

for cooperative image editing,” IT Professional , vol. 9,

no. 3, May-June 2007.

[9] L. Du and U. Chandra, “Building web-based

collaboration services on mobile phones,” in Proc.

Collaborative Technologies and Systems, May 2008.

[10] J. J. Garrett, Ajax: A new approach to web applications.

http://www.adaptivepath.com/publicati

 ons/essays/archives/000385.php, 2005.

[11] C.T. Sun and C. Chou, “Experiencing CORAL:

Design and Implementation of Distant Cooperative

Learning,” in Proc. IEEE Transaction on Education,

August 1996, pp. 357-366.

[12] R. Bentley, “Architecture Support for Cooperative

Multiuser Interfaces,” in Proc. IEEE Computer

Magazine, May 1994, pp. 37-47.

[13] A. Roczniak, S. Janmohamed, C. Roch, A. El Saddik and

P. Levy, “SOA-based Collaborative Multimedia

Authoring,” in Proc. Montreal Conference on

eTechnologies, 2006.

�2�2�6

