Improvement of Short Circuit Performance in 460[V]/400[A]/85[kA] Molded Case Circuit Breakers
Seung-Su Lee, June-Her, Jae-Hun Yoon, Seong-Hwa Kang and Kee-Joe Lim
Chungbuk University, Chungecheong College

Abstract: Owing to the increasing number of intelligent homes (or called Smart home), the corresponding cost is much higher. Low voltage circuit breakers are widely used in the intelligent homes to interrupt fault current rapidly and to assure the reliability of the power supply. The distribution of magnetic field induced by arc current in the contact system of molded case circuit breaker (hereafter MCB) depends on the shape, arrangement, and kinds of material of arc runner. This paper is focused on understanding the interrupting capability, more specifically of the arc runner, based on the shape of the contact system in the current MCB. The magnetic driving force was calculated by using the flux densities induced by the arc current, which are obtained by three-dimensional finite element method. There is a need to assure that the optimum design required to analyze the electromagnetic forces of the contact system generated by current and the flux density be present. This is paper present our computational analysis on contact system in MCB.

Key Words: Contact system, MCB, Molded case circuit breaker