Yellow 발광 OLED의 전기적 특성

홍진진, 기현철, 민용기
광주대학교, 한국광기술원

Electrical Properties of Yellow Emitting OLED
Kyoung-Jin Hong, Hyun-Chol Ki* and Yong-Ki Min
KOPTI*, Gwangju Univ.

Abstract: We studied the effect of ITO surface treatment by using O₂ plasma to enhance the emission efficiency of the Organic Light Emitting Diodes (OLEDs). The luminance efficiency and the operational stability were improved with an ITO anode treated at the optimized conditions.

Key Words: luminance efficiency, emission efficiency, ITO surface treatment

1. 서 론

ITO 표면처리는 일정수 표면 거칠기를 제거하여 OLED 소자의 전기적-광학적 특성을 향상시키기 위한 것이다. 높은 일정수를 가진 ITO는 유기물과 계면을 형성할 때 정착 주입을 위해 에너지 장벽이 낮아지게 되며 낮은 표면 거칠기를 가진 ITO는 정착의 일정한 단면을 통한 주입을 용이하다.

따라서 본 연구의 목적은 ITO/정전절물질 계면에서 원활한 정착주입과 에너지 장벽을 낮추기 위해 ITO에 플라즈마 표면처리를 행하여 ITO 표면의 전기적 특성과 표면 거칠기를 개선하고자 한다. 이를 통해 ITO 표면처리된 ITO를 이용하여 OLED 소자로 제작한 소자등급 및 발광특성에 대해 연구하였다.

2. 실험

ITO의 제조는 아세톤(Acetone), 메틸알코올(Methyl alcohol), 이소프로필알코올(Isopropyl alcohol) 순으로 5 0℃에서 5분간 초음파 세척(ultrasonic cleaning)을 실시한 뒤 탈이온수(DI water)로 세정하였다. 세정된 ITO는 젤소 가스로 건조하였고 ITO 표면에 남아 있는 수분을 제거하기 위해 소프트 베이킹(soft-baking)하였다.

세척이 곧난 60×60mm 크기의 ITO 기판은 강광용 액과 접착제를 향상시키기 위하여 HMDS (hexamethyldisilazane)용액을 3500rpm 속도로 30초 동안 스프링팅하였다. 그리고 양성광영역인 AZ1512 용액 역시 3500rpm 속도로 30초 동안 스프링팅하였다. 그 다음 110℃ 전열기에 2분 동안 소프트 베이킹하였다.

소프트 베이킹 곁난 기판은 미크로 머라이어 거품제를 이용하여 패턴마스크를 정밀하게 자외선(UltraViolet)램프에 20초간 노출시킨 후 11 0℃ 전열기에 2분 동안 베이킹하였다.

베이킹된 기판은 현상용액(AZ300)에 40초간 현상을 실시한 다음 탈이온수로 세정하였다. 세정이 곧난 ITO는 젤소 가스로 건조하였고 ITO 표면에 남아 있는 수분 제거를 위해 110℃ 전열기에 2분간 베이킹하였다.

사전공정이 곧난 기판을 열실: 탈이온수 각각 1:1 비율로 씻은 용액에 20분간 슬식 식작하고 탈이온수로 세정한 다음 젤소 가스로 건조시켰다. 장착제 제거는 180℃ 전열기 위에 가열한 아세톤으로 5분 동안 금속막을 제거하고 탈이온수로 세정한 다음 젤소 가스로 건조시켰다. 건조시킨 ITO는 110℃ 전열기에서 2분간 베이킹하였다.

슬식 식작이 곧난 기판을 20×20mm로 자른 후 마지막으로 세척을 실시하였다. 세척 순서는 EKC830, 아세톤, 메틸알코올, 이소프로필알코올 순으로 5분간 초음파 세척을 실시하고 탈이온수로 세정한 다음 젤소 가스로 건조시켰다. 건조시킨 ITO는 110℃에서 5분간 하드 베이킹하였다.

3. 결과 및 고찰

O2 플라즈마의 RF 출력에 따라 표면 처리된 ITO 위에 TPD/AIq3+Rubren/LIF/Al 구조로 제작된 유기발광 소자의 전압-전류, 전압-광도 특성을 그림 1과 그림 2에 나타냈다. 플라즈마 RF 출력은 25 W로 표면 처리한 ITO 소자로 제작된 유기발광소자의 동작전압이 3.5 V로 우수한 특성을 나타냈다. 표면 저항이 낮은 값은 갖는 소자등급에 입차량이 증가하기 때문에 동작 전압 낮아지는 것이다. 전압-광도의 특성에서도 루브캠을 ITO 소자가 15.5 V에서 5,000 cd/m^2으로 가장 우수한 특성을 나타냈다. 루브캠의 적층 두께가 줄감수록 휘도는 증가하였으며, 동작전압 역시 증가하였다. 향후 루브캠의 두께를 더욱 증가시켜 휘도와 동작 전압이 증가하는지 확인할 필요가 있다.
4. 결론

루브렌의 두께를 200[Å], 400[Å], 600[Å]으로
변화를 주면서 소자를 제작했을 때, 가장 좋은 전기적
광학적 특성을 보인 루브렌의 두께는 600[Å]이었다.
위와 같은 결과를 통해 본 연구에서는 루브렌의 두께
가 600[Å], 발광층 두께 600[Å]이 최적두께이었으
며 TPD(400Å)/Alq(600Å)소자는 동작전압이 5[V].
최고 휘도는 16[V]에서 3500[cd/m²]이었다.

참고 문헌

Choi, Y. J. Cho, Y. K. Kim and Y. S. Kim, "Surface
treatment effects of indium-tin-oxide in organic
light-emitting diodes", Optical Material, Vol. 21,
[2] H. T. Lu and M Yokoyama, "Plasma preparation on
indium-tin-oxide anode surface for organic light
emitting diodes", J. Crystal Growth, Vol. 250. Iss. 1-2,
"Surface modification of indium tin oxide by plasma
treatment: An effective method to improve the
efficiency, brightness, and reliability of organic light
and A. Winnacker, "Reduced operating voltage of
organic electroluminescent devices by plasma treatment