MEMS Unit용 마이크로 Slit의 scallop 제거 공정 연구

학부, 신우주, 고현우, 김성훈, 김두근, 황영수
한국과학기술연구원, 경남대학교

Abstract : 최근 디스플레이 산업의 발달로 LCD 판넬의 수요가 급증함에 따라 검사장치 분야도 동반 성장하고 있다. LCD 검사를 위한 probe unit은 미세전기기계시스템(MEMS) 공정을 이용하여 제작된다. 본 연구에서는 probe card의 미세 슬릿을 제작하기 위한 Si 길이의 식각 공정을 수행하였다. 공정에 사용된 장비는 STS 사의 D-RIE 시스템으로 식각 가스로 SF₆, passivation용으로 C₄F₈ 가스를 각각 사용하였다. 식각용 마스크는 30 ~ 50 μm 의 선두를 probe card의 패턴에 따라 제작하였으며, 본산은 SEM 측정을 이용하였다. 식각 공정은 발생하는 scallop은 시료를 oxidation 시켜 SiO₂ 풍을 형성한 후에 식각구멍에 앉혀서 제거하였다. 제거한 scallop의 크기는 약 120 nm에서 제거후 약 50μm로 크게 개선됨을 SEM 사진으로 확인하였다.

Key Words : MEMS, Scallop, Micro slit

1. 서론

최근 디스플레이 산업의 발달로 LCD 판넬의 수요가 급증함에 따라 검사장치 분야도 동반 성장하고 있다. LCD 검사를 위한 probe unit은 미세전기기계시스템(MEMS) 공정을 이용하여 제작된다. 본 연구에서는 probe card의 미세 슬릿을 제작하기 위한 Si 길이의 식각 공정을 수행하였다. 식각 공정에서 발생하는 Scallop 제거 공정 연구를 진행하였다.

2. 실험

실험에 사용된 장비는 STS 사의 D-RIE 시스템으로 식각 가스로 SF₆, passivation용으로 C₄F₈ 가스를 각각 사용하였으며, 그림1. 같이 바닥면 식각구 벽면 보호막의 중요성이 순차적으로 반복되는 Bosch process가 사용되었다. 식각용 마스크는 30 ~ 50 μm 의 선두를 probe card의 패턴에 따라 제작되었으며, 공정시에 건들 수 있는 thick PR로써 PMER-NC3000, 두께는 약 15 μm로 하였다. 공정 조건은 C₄F₈ 400sccm, SF₆ 400sccm, etch cycle time는 7~10 sec일 때가 최적의 조건임을 확인하였다.

![Bosch Process Diagram](image)

그림 1. Si Deep etching 공정 순서

3. 결과 및 검토


![Scallop Diagram](image)

그림 2. Si 길이 식각 및 신하막 제거 공정에 의한 Scallop 제거 전후의 SEM 사진. (A) 신하막 제거 전 (B) 신하막 제거 후

4. 결론

본 연구에서는 MEMS unit용 마이크로 slit의 scallop 제거 공정을 연구하였으며, 식각 공정 조건은 C₄F₈ 400sccm, SF₆ 400sccm, etch cycle time는 7~10 sec일 때가 최적의 조건임을 확인하였다. 또한 Si 길이 식각 공정 진행시 발생하는 scallop을 제거하기 위하여 식각 공정이 후 시료를 oxidation시킨 후 신하막 식각 구멍에 앉혀서 scallop을 제거한 결과 scallop 폭이 현저히 감소함을 확인할 수 있었다.

참고문헌