대형 LCD-TV용 LED-BLU 방열 설계에 관한 연구
정기호
※ 삼성전자 기술홍보 부산연구본소

Abstract: In many applications for display with LED, the thermal behavior of LED is most important issue in view of thermal management. The optical requirements of the displays for various applications make the designer to drive the LED at or over their on-design condition to achieve performances requested by users. In practical cases of large-sized TV with LED back light unit (BLU), the problem of increasing LED temperature can affect the reliability of LED itself and the optical performances of BLU as an assembly of LED. In this paper, the thermal management design of LED back light unit (BLU) for large-sized TV was performed

Key Words: LED-BLU, Thermal management

1. 서 론

본 연구에서는 대형 LCD-TV용으로 제작된 LED-BLU의 방열 구조 설계 절차를 다루고 있다. LED-BLU의 개별 설계에만부터 최종 설계계에 이르는 과정을 DFSS (Design For Six Sigma) 방법론에 따라 진행하였다.

2. 개념 설계

개념 설계를 위해서는 LED-BLU가 가지해야 할 필수적인 성능을 규정해야 하고, 규정된 성능을 만족시키기 위한 설계 요소들이 구체적으로 전개되어야 한다. 따라서 제작한 LED-BLU를 구매하는 LCD-TV업체가 고려하여, 모든 요구 사항은 user specification이다. 본 연구에서는 잘 알려진 프로세스설계(QFD) 기법을 적용하여 고객의 요구사항으로부터 설계 요소들을 전개하였다.

3. 상세 설계

선정된 개념 설계안에 대한 상세 설계를 위해 각 서브 시스템에서 제어어인지로 선정될 수 있는 요소들을 brainstorming을 통해 도출하고, XY 매트릭스를 이용하여 우선 순위가 하였다. 이 과정에서 몇 가지 경우에 대한 열/유동 시뮬레이션을 통해 설계가 점단의 평가가 제대로 된 것인지지를 검증하였다. 최종적으로 MC-PCB 재질, 납땜의 유형, MC-PCB 두께, 납땜의 평면위치(가로, 세로), LED-BLU의 위치와 납땜의 수직거리, 계면 혼합 저감음 물질 등이 주요인자로서 선정되었다. 최종설계안의 온도특성을 납땜 유무에 따라 예측하여 Fig.1에 나타내었다.

4. 검증 및 결론

Table 1에 나타낸 바와 같이, 설계안에 의해 설계 제작된 LED-BLU의 온도특성을 시뮬레이션에 의한 예측결과와 비교하여 평가하였다. 최대온도는 아주 정확하게 예측하고 있으나, 온도범위가 다소 오차가 큰 경향을 나타내고 있다.

Table 1 Summary of the contribution ratio of each mechanism to total deformation

<table>
<thead>
<tr>
<th>Item</th>
<th>With FAN</th>
<th>Without FAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_max (℃)</td>
<td>Meas. 31.3</td>
<td>Pred. 31.4</td>
</tr>
<tr>
<td>T_range (℃)</td>
<td>Meas. 3.2</td>
<td>Pred. 1.6</td>
</tr>
</tbody>
</table>