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ABSTRACT: Productivity measurement of construction machinery is a significant issue faced by many contractors 
especially those involved in earthwork projects. Traditionally, equipment production rate has been estimated using data 
available in manufacturers’ catalogues, results of previous construction projects, or personal experience and assessments of 
the site personnel. Actual production rates obtained after the completion of a project demonstrate the fact that most of these 
methods fail to provide accurate results and as a direct consequence, may lead to unrealistic project cost estimations 
prepared by the contractors. What makes this more critical is that in most cases, inadequate cost estimations lead the entire 
project to exceed the initial budget or fall behind the schedule. In this paper, a linear regression method to estimate 
bulldozer productivity is introduced. This method has been developed using SPSS-16 software package. The presented 
method is used to estimate the productivity of Komatsu D-155A1 series which is commonly used in many earthmoving 
operations in Iran. The data required for the numerical analysis has been collected from actual site observation and 
productivity measurement of 60 pieces of D-155A1 series currently being used in several earthmoving projects in Iran. 
Comparative analysis of the output data of the presented regression method and the existing productivity tables provided by 
the manufacturer shows that when compared to the actual productivity data collected on the jobsite, a significant increase in 
accuracy and a remarkable reduction of data variance can be achieved by using the presented regression method. 
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1. INTRODUCTION 
 
Productivity estimation of construction equipment is a 
critical step in scheduling and budget planning of 
earthwork projects. Traditionally, there have been two 
major approaches to estimate construction machinery 
production rates prior to the start of the actual operations. 
One method uses data from previous projects and the 
personal experience of the involved site personnel (e.g. 
operators, engineers) whereas the other takes advantage 
of the tables and information included in manufacturers’ 
instruction manuals and performance charts. It is also a 
common practice for major construction firms to produce 
their own production rate tables and diagrams based on 
actual site data which can be used to estimate equipment 
productivity rates for future projects. The data presented 
this way are usually based on ideal site and equipment 
conditions and as a result, several coefficients and 
correction factors must be applied to obtain equipment 
production rates in each case while including parameters 
such as the environmental conditions of the project, 
operator’s experience, and the efficiency of jobsite 
management [1, 2]. 
Previous studies conducted on various earthwork projects 
in Iran as well as other countries indicate that there is a 
relatively significant difference between the estimated 
equipment production rates calculated prior to the 

beginning of the project and the actual data obtained 
during the operation [3, 4]. If not properly taken into 
account, this will eventually have a major impact on how 
accurate and reliable project planning and time and cost 
management is achieved in a typical earthwork operation. 
In recent years, earthwork contractors have concentrated 
more on the deterministic approaches that enable them to 
estimate equipment productivity with satisfactory degree 
of accuracy under different operational conditions. 
Moreover, a number of computational models have been 
developed by several researchers to determine the 
productivity in construction projects including earthwork 
operations. Smith proposed the concept of a linear 
regression technique for productivity estimation of 
earthmoving operations [5, 6]. Chao and Skibniewski 
developed a neural network based approach for 
construction productivity estimation [7] and Tam et al. 
applied artificial neural networks model for predicting 
excavator production rate [8]. Although the application 
of intelligent models such as artificial neural networks 
and fuzzy expert systems in various civil engineering 
disciplines has been recently discussed by several 
researchers [7, 8, 9], the authors pursued a linear 
regression technique for productivity estimation of 
bulldozers in construction projects in Iran mainly due to 
the following reasons: 
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- Intelligent models such as artificial neural network 
systems require a large amount of empirical data for 
validation and assessment.  

- Due to reasons such as site topography, project 
complexity, and human errors, measuring actual 
jobsite data in many projects is usually a very 
difficult and time consuming if not an impossible 
task. Since linear regression based methods require 
less site date collection, they prove to be more 
effective under harsh jobsite conditions such as 
earthmoving operations.  

- Site engineers in many construction projects 
(including those in Iran) seem to be more familiar 
with the concept of regression analysis due to the 
fact that most of the required mathematical 
background is taught in colleges and universities 
nationwide as a standard component of the 
curriculum.   

As a result, a linear regression approach for productivity 
estimation of Komatsu D-155 A1 series bulldozer 
(commonly used in earthmoving projects in Iran) is 
presented in this paper. The term “productivity” in the 
context of this paper refers to the volume of loose soil 
excavated by a bulldozer per hour 
 
2. INTRODUCTION TO THE D155-A1 
KOMATSU BULLDOZER 
 
Komatsu D-155 A1 series bulldozer is considered as one 
of the most commonly used earthwork equipment in Iran 
especially for excavating and short range dozing 
operations since: 

- It provides enough engine power required to perform 
earthmoving operations under various topographical 
conditions and given different soil properties in Iran. 

- It has a reasonable price in Iranian construction 
market compared to other similar models such as 
Caterpillar D8 series bulldozers. 

- The Iranian construction market provides easy 
access to spare parts, service, and maintenance of 
this model. 

- Most equipment operators are more familiar with 
operating and performing basic maintenance on this 
model. 

 
In Table 1, average hourly cost for Komatsu D-155 A1 
series is compared with other commonly used 
construction resources in Iran. The fact that the D-155 
A1 series costs significantly more compared to other 
resources shows the importance of conducting accurate 
production rate estimation during the project budget 

planning phase for this piece of equipment in a typical 
construction project. 
 
Table 1. Average cost of construction resources in Iran 

 

Type of Resource Approximate Cost 
( $/Hour )* 

Bulldozer D-155 A1 34-38 
Loader W-120 15-18 
Truck ( 6 m3 ) 5-6 
Site Engineer 4-8 

Unskilled Labor 1.5-2.5 
 

* Based on a survey conducted by authors (October 2008, 
Tehran, Iran) 

 
3. COLLECTION OF SITE DATA 
 
The first step in developing a regression model is to 
collect actual jobsite data. In order to achieve the best 
results, a number of field experts were consulted and a 
list of all factors affecting the productivity of a bulldozer 
was created. Consequently, actual production rates of 60 
bulldozers operating in 38 active construction sites in 
Iran were observed and measured over a one year period. 
The following assumptions were made when evaluating 
actual equipment production rates: 

- In order to provide uniformity in data collection, 
only one construction expert who was completely 
familiar with earthwork operations was asked to 
measure qualitative data (e.g. operator’s level of skill, 
site management conditions) for all 60 pieces of 
equipment. 

- Earthwork projects were selected by taking into 
account various geographical and climatic conditions 
with the aim of including factors such as topography 
and weather conditions into calculations. 

 
In this research, a bulldozer’s actual production rate is 
determined by dividing the total volume of soil loaded in 
trucks by the total operational hours per work day. Total 
volume of loaded soil can be calculated by adding up the 
bucket capacities of all loaded trucks used in the 
operations. Table 2 lists 18 different parameters that 
contribute to the equipment production rate together with 
actual site data collected for a sample bulldozer.  
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Table 2. Factors influencing production and data collected for a sample bulldozer 
 

NO. FACTOR STATUS SAMPLE 
1 Total service life time (hours) 0 – 150,000 100,000 
2 Service and maintenance condition Good/Average/Rather poor/Poor Good 

3 Type of blade  Straight tilt dozer/U-tilt dozer/Semi U-tilt 
dozer/Angle dozer U-tilt 

4 Maximum blade capacity (m3) 4.8/6.8/8.8/11.8  8.8 
5 Blade sharpness Good/Average/Rather poor/Poor Average 
6 Ripper used? Yes/No  Yes 
7 Time between gear shifting (seconds) Less than 5/Between 5~10/More than 10  Less than 5 
8 Operator’s skill Good/Average/Rather poor/Poor Good 

9 Overall operator’s condition during the 
operation Good/Average/Rather poor/Poor Good 

10 Site management quality Good/Average/Rather poor/Poor Average 
11 Number of consecutive operational days Between 0 ~100 7 

12 Predominant soil type  Sand/Sandy clay/Clay/Gravel/Broken rocks Broken rocks

13 Big pieces of rock exist on the site? No/Rarely/Commonly Commonly 
14 Equipment maneuvering space Easy/Average/Rather difficult/Difficult Easy 
15 Ground grade (%)  -25~25 -10% 
16 Dozing distance (m) 0~150  20 
17 Operation time Morning/Afternoon/Night Morning 

18 Average temperature during operation 
(°C)  -15~45 20 

 Actual Measured Productivity 
( Lm3/Hour) 150 

 
4. LINEAR REGRESSION ANALYSIS 
 
Linear regression techniques, first introduced by 
Legendar (1805) and Gous (1809), are commonly used in 
several scientific and engineering fields. In this paper, a 
multiple linear regression model is used to determine the 
statistical relationship between a response (e.g. estimated 
productivity) and the explanatory variables xi (e.g. soil 
type, dozing distance, and blade type). The following 
equations present general forms of single and multiple 
linear regression approaches [11], 
 

εββ ++= xy 10
ˆˆ    (1) 

iippi xy εββ ++= ∑0    (2) 

In which, 
• yi is the response corresponding to the levels of the 

explanatory variables x1i, x2i, . . . , xpi at the ith 
observation. 

• β0, β1, . . . , βp are the coefficients in the linear 
relationship. For a single factor (p = 1), β0 is the 
intercept, and β1 is the slope of the straight line 
defined. 

• ε1, ε 2, . . . , ε n are errors that create a scattered point 
pattern around the linear relationship at the ith 
observation (i ranges from 1 to n). 

Using the least squares errors estimator, a common 
method for obtaining parameters of a regression model, 
parameters are determined using the following equation, 
 

 

In which, the residual ei is the difference between the 
observed response yi and the estimated or fitted value yˆi; 

iii yye ˆ−=  (4)

xy 10
ˆˆ ββ −=     (5)

∑
∑

−
−−

= 21 )(
))((ˆ

xx
yyxx

i

iiβ     (6)

 
 

The statistical t-test is used to initially determine the 
significance of each explanatory variable, with each 
computed coefficient subjectively checked for a rational 
cause and effect relationship. The t-statistic is the ratio of 

∑
=

=
n

i
ieSSE

1

2    (3) 
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5. F-TEST FOR EVALUATION OF 
REGRESSION SIGNIFICANCE AS A WHOLE 
 
In order to assess the significance of a regression model 
as a whole, F-test is used as follows,   

 
 
 
 
 
 

In which,  
SST: sum of total squares  
SSR: total regression squares 
SSE: sum of squares errors  
df (T): degree of total freedom = n – 1 
df (R): regression freedom degree = number of 
parameters (βi) in model  
df (E): Error freedom degree = df (T) – df (R) 
 

The F-ratio calculated in Equation (9) is compared with 
the existing 1),(),( −αEdfRdfF  of standard tables. If the 

calculated F is larger than 1),(),( −αEdfRdfF , the regression 
is considered to be significant as a whole. 
 
6. COEFFICIENT OF DETERMINATION (R2) 
 
This quantity specifies the rate of relation between 
response (y) and explanatory variables (xp) of the 
regression model. The higher this quantity, the higher 
precision should be made in the model. R is calculated 
using the following equation,  

 

In addition to performing this test, the following 
conditions have to be satisfied:  

A) Independence: yi s should be independent from 
each other.  

B) Constant variance: Variability of the data should 
not change for different levels of the response or 
explanatory variables. One way to check whether 
this condition is fulfilled is by using residual plots. 
If the constant variance condition holds, then 
residuals will follow a normal distribution and a 
plot of the residuals for each i versus the fitted yˆi 
values must follow a random pattern, and 

C) Normality: yi s must have normal distribution. 
Shapiro-Wilk test is typically used to check for 
this condition which yields to relatively more 
precise output for small sample volumes compared 
to other normal tests [12]. 

 
7. PREPARATION OF REGRESSION MODEL 
FOR PRODUCTIVITY ESTIMATION 
 
The explanatory variables, used in our model, have been 
generated in order to estimate the productivity of 
bulldozers while including all parameters listed in Table 
2. The parameters in Table 2 are either quantitative (e.g. 
temperature of the operations environment, dozing 
distance) or qualitative (e.g. type of soil, type of blade). 
In this model, all qualitative variables are converted to 
binary values (i.e. 0, 1) before being used for the 
regression process. For instance, the corresponding 
variable to the blade type (X3) can represent an “angle 
dozer”, a “u-tilt”, a “semi u-tilt”, or a “straight” blade. 
For this specific variable, “semi u-tilt” is used as the base 
type and other blade types are denoted in the model as 
X3(u) for u-tilt blade, X3(angle dozer) for angle dozer, 
and X3(straight) for straight blade. If all these three 
variables equal to 0, the conclusion will be that the dozer 
is equipped with a “semi u-tilt” blade (base condition). 
X3(u) being equal to 1 while other variables are all equal 
to 0 indicates that the dozer has a “u-tilt” blade, and if 
X3(angle dozer) is equal to 1 and all other variables are 
equal to 0, it indicates an “angle dozer” type. Finally, if 
X3(straight) is equal to 1 and all other variables are equal 
to 0, the dozer has a “straight” type of blade. In other 
words, a value of 1 indicates the existing blade type 
while 0 shows that the corresponding blade type is not 
used by the dozer. As a result, for each qualitative 
parameter only one state variable can be 1 and all other 
state variables will be considered to be equal to 0.  
Similarly, for type of soil (variable X12) which can be 
either “clay”, “sandy clay”, “sand”, “gravel”, or “broken 
rocks”, “sand” is selected as the base type while other 
types are shown as X12 (clay), X12 (sandy-clay), 
X12(gravel) and X12 (broken rocks) respectively. For 
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variables such as “operator’s skill”, which consist of 
multiple states (e.g. “good”, “average”, “rather poor”, 
and “poor”), appropriate numerical values are assigned to 
each state (e.g. 4 for “good”, 3 for “average”, 2 for 
“rather poor”, and 1 for “poor”). 
As noted earlier, the regression model in this paper was 
prepared using the actual site data collected from 60 D-
155A1 series bulldozers using SPSS–16 software 
package. Table 3 shows outputs of SPSS software 
package which consists of coefficient of variables of 
approach and values of t and F ratios.  
 

Table 3.Parameters of initial regression model 
 

Explanatory 
Variables  

Coefficients t-ratio Sig.-
ratio 

(Constant) 78 0.650 0.520

1X  .000041 0.439 0.664

2X  -11.8 -1.065 0.294

4X  17.2 2.677 0.011

)(3 uX  -19.9 -1.102 0.278

)(3 angledozerX  18.9 0.619 0.540
)(3 straightX  -50.8 -1.836 0.075

5X  0.5 0.037 0.971

6X  15.8 0.950 0.349

7X  9.2 0.910 0.369

8X  1.8 0.158 0.875

9X  28.6 2.178 0.036

10X  1.06 0.110 0.913

11X  0.701 1.031 0.310
)(12 ksbrockenrocX  -124 -5.559 0.000
)(12 claysandyX −  -29.5 -1.370 0.180

)(12 gravelX  -92.5 -3.354 0.002

)(12 clayX  -82.1 -4.154 0.000

13X  4.2 0.339 0.737

14X  -9.4 -0.748 0.459

15X  -1.18 -1.787 0.083

16X  -1.52 -5.084 0.000

)(17 afternoonX  -34.3 -2.375 0.023

)(17 nightX  -83.3 -1.479 0.148

18X  -0.702 -0.966 0.341
 
Based on the values of Table 3, Equation (11) was 
derived to estimate bulldozer productivity, 

 

)11(702.0
)(3.83)(3.3452.1

18.14.92.4)(1.82
)(5.92)(5.29

)(124701.0
06.16.288.12.98.15

5.0)(8.50)(9.18
)(9.192.178.11000041.078

18

171716

15141312

1212

1211

109876

533

3421

X
nightXeveningXX

XXXclayX
gravelXclaysandyX

ksbrockenrocXX
XXXXX

XstraightXangledozerX
uXXXXy

−
−−−
−−+−

−−−
−+

+++++
+−+

−+−+=

 

 
The F-ratio of this regression equation is equal to 6.365 
which is considered to be "significant" with very high 
level of confidence (more than 99%). Therefore, 
significance of regression as a whole is regarded as 
"approved". Also, Shapiro-Wilk test was used to study 
the normality the results of which are shown in Table 4. 
This Table confirms that the results meet the condition of 
normalization. 
 

Table 4.Test of normality results test for regression 
model 

 
Tests of Normality 

Shapiro-Wilk Statistic df Sig. 
Standardized Residual 

for Productivity 0.981 60 0.462 

 
The scattered plot shown in Figure 1 was used to check if 
the constant variance condition is satisfied. It is apparent 
that points have been scattered randomly all across the 
plot area. In addition, t-test was conducted to investigate 
the significance of each variable. The results indicated 
that coefficients of variables X4, X9, X12(clay), 
X12(gravel), X12(broken rocks), X16, and X17(evening) 
have the highest significance level (above 95%). Also, 
coefficients of variables X1, X5, X8, X10, and X13 have the 
least amount of significance level which is comparable to 
a statistical 0. Along the same direction, significance 
level of other variables can be easily obtained by using 
the information provided in Table 3. The value of R2 is 
equal to 0.814 which indicates that the variables included 
in Equation (11) describe %81.4 of variations in 
productivity of a bulldozer.  
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Figure 1.Residual plot for linear regression model 

 
8. IMPROVEMENT OF THE REGRESSION 
MODEL  
Having successfully developed the regression model, the 
next step was to improve the significance level of model 
variables and the regression model as a whole. For this 
reason, one insignificant variable was omitted each time, 
a new model was built, and the significance level of 
variables and the regression model as a whole were 
calculated for the new model. The final model was then 
selected based on the calculated levels of significance. In 
this research, a step-wise method was developed in 
Minitab to conduct the trial and error process described 
above. The calculations carried out for various models 
indicated that omission of variables X1, X2, X5, X6, X7, 
X8, X10, X11, X13, X14 and X18 (with significance levels 
shown in Table 3) would improve the model capability to 
estimate the equipment productivity. Therefore, the new 
model is presented as follows in which parameters of 
Table 5 are used, 
 

 

)12()(1.14
)(7.14)(2.43

)(2.33)(2.70
)(9.39)(6.291.25

5.11)(9.8125.1
28.1)(1229.78

3

33

1212

17179

41215

1612

angledozerX
uXstraightX

claysandyXgravelX
nightXeveningXX

XclayXX
XksbrockenrocXy

+
−−

−−−
−−+

+−−
−−=

 

 
The value of F for this new model is equal to 13.11 
which indicates a high level of significance of the 
regression model as a whole. R2 ratio is equal to 0.787 
which means that the variables included in Equation (12) 
describe %78.7 of variations in productivity of a 
bulldozer. 
 

Table 5.Parameters of improved regression model 
 

Explanatory Variables Coefficients t-ratio 
Sig.-
ratio 

(Constant) 78.9 1.83 0.074

4X  11.5 2.28 0.027

)(3 uX  -14.7 -1.22 0.229

)(3 straightX  -43.2 -1.88 0.067

9X  25.1 2.79 0.008

)(12 ksbrockenrocX -122 -7.92 0.000

)(12 claysandyX − -33.2 -2.02 0.049

)(12 lgravelysoiX -70.2 -3.28 0.002

)(12 clayX  -81.9 -5.06 0.000

15X  -1.25 -2.18 0.035

16X  -1.28 -6.08 0.000

)(17 afternoonX  -29.6 -2.64 0.011

)(17 nightX  -39.9 -0.95 0.345

)(3 angledozerX  14.1 .60 .553
 

Figure 2 shows the new linear regression model. In this 
Figure, y and x axes respectively correspond to 
productivity per hour and the values of explanatory 
variables as used in the regression. 
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Figure 2.Actual productivity plotted versus fitted productivity for the linear regression model 
 
The interpretation of coefficients of the qualitative 
variables in Equation (12) is also of critical importance. 
In fact, the corresponding coefficient to each qualitative 
variable in this equation shows the difference between 
the current and base states of that same variable. For 
example, the coefficient value of -122 of the qualitative 
variable X12(broken rocks) in Equation (12) means that 
the average productivity in a soil which mainly consists 
of broken rocks is %122 less than that in a base type (i.e. 
sand) soil. Following the same argument, the average 
productivity in sandy clay, gravel, and clay types of soil 
is %33.2, %70.2 and %81.9 less than that in sand type of 
soil. The same argument also holds for other qualitative 
variables in the regression model.  
 
9. CASE STUDY 
 
The productivity of an actual bulldozer was formulated 
using the developed regression model and according to 
the following assumptions and conditions: 
 

Type of soil: gravel soil 
Blade capacity: 6.8 m3 

Overall Operator’s condition during the operation: rather 
poor 
Dozing distance: 25 m 
Operation time: afternoon 
 

By substituting the above parameters and data in 
Equation (12), the numerical value of the bulldozer 

productivity per hour is calculated based on the following 
equation,  
 

36.100
2.706.2931.258.65.112528.19.78

LM
y
=

−−×+×+×−=
 

 
10. CONCLUSION 
 
Actual productivity values for 60 Komatsu D-155A1 
series bulldozers were measured on several construction 
sites and were compared to their theoretical productivity 
obtained from the manufacturer’s catalogue. In addition, 
the developed regression models in Equations (11) and 
(12) were used to estimate the productivity of the same 
pieces of earthmoving equipment. Figure 3 shows a 
comparison of the results obtained from actual onsite 
measurements, manufacturer’s catalogue, and the 
developed regression model. 
In order to evaluate the degree of error inherited in the 
regression model as well as the inaccuracy of the 
productivity estimation obtained using the data from the 
manufacturer’s catalogue absolute errors were also 
calculated in both methods and are shown in Figure 4. 
As shown in this Figure, the absolute errors resulted from 
the developed regression model are significantly less 
than those of the manufacturer’s catalogue. In conclusion, 
the developed regression approach is capable of 
producing more accurate estimates of the equipment 
productivity. 
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Figure 3.Comparison between actual and estimated productivity  
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