Nonlinear evolution of the relativistic Weibel instability driven by anisotropic temperature

  • Kaang, Helen H. (Department of Physics, POSTECH) ;
  • Mo, Chang (Department of Physics, POSTECH)
  • Published : 2009.10.15

Abstract

The relativistic Weibel instability has drawn attention as a main mechanism of the magnetic generation in the core of galaxies or in the formation of universe. The Weibel instability is not yet fully understood in the relativistic region. We investigated nonlinear saturation and decay of the relativistic Weibel instability. It is found that the early phase of the instability is in excellent agreement with the linear theory. But, an analysis based on an alternative magnetic trapping saturation theory reveals that a substantial discrepancy between the theory and simulation is revealed in the relativistic regime in contrast to an excellent agreement in the non-relativistic regime. The analysis of the Weibel instability beyond the quasilinear saturation stage shows an inverse cascade process via a nonlinear decay instability involving electrostatic fluctuation.

Keywords