reddening by interstellar dust from the massive stars they contain, are used to derive their ages and masses. The GALEX imaging, combining deep sensitivity and entire coverage of the galaxy, provides a complete picture of the recent star formation in M31 and its variation with environment throughout the galaxy. The FUV and NUV measurements are sensitive to detect stellar populations younger than a few hundred Myrs. We detected an measured 894 SF regions, with size ≥ 1600 pc2 above an average flux limit of ~26 mag arcseocnd-2, over the whole 26 kpc galaxy disk. We derive the star-formation history of M31 within this time span. The star formation rate (SFR) from the youngest UV sources (age \leq 10 Myrs) is comparable to that derived from Ha, as expected. We show the dependence of the results on the assumed metallicity. When star formation detected from IR measurements of the heated dust is added to the UV-measured star formation (from the unobscured populations) in the recent few Myrs. the SFR is slightly decreasing in the recent epochs, with a possible peak between 10 and 100 Myrs, and an average value of SFR ~0.8 or 0.9 M yr-1 (for metallicity Z=0.02 or 0.05 respectively) over the last 400 Myrs. ### [GC-12] Globular Cluster System of Sombrero Galaxy Eunhyeuk Kim¹, Sangmo Tony Sohn^{1,2}, Sang-II Han¹, Hak-Sub Kim¹ and Young-Wook Lee¹ ¹Department of Astronomy and Space Sciences, Yonsei University, ²California Institute of Technology, USA We carried out wide field multi-band observations of Sombrero galaxy (M104) using mosaic camera equipped with CTIO 4m Blanco telescope. To investigate the physical properties of globular cluster system (GCS) of M104 we first select the GC candidates based on UBVI photometry. By applying a similar selection method applied to the study of GCS in NGC 1399 in Fornax cluster (Kim et al 2009) we found hundreds of GC candidates in Sombrero galaxy. We present both photometric properties and spatial distribution of GCs in M104. We confirm the clear bimodality of GC color distributions based on a large number of GCs. We also find that GCs in M104 are spatially more concentrated into the galaxy center. Using the archival data of Chandra X-ray observatory we compare the optical properties of GCs with the x-ray properties of low-mass X-ray binaries in M104. ### ■ Session : 은하/우주론Ⅲ (GC) 4월 29일(수) 16:25 - 17:55 제1발표장 # $[\bar{\Sigma}GC-13]$ Three theoretical issues in physical cosmology: nonlinear clustering, dark matter, and dark energy Jai-chan Hwang¹, and Hyerim Noh² ¹Department of Astronomy and Atmospheric Sciences, Kyungpook National University ²Korea Astronomy and Space Science Institute We present our recent studies on three theoretical issues in physical cosmology. (1) We probe the pure Einstein's gravity contributions to the second-order density power spectrum. (2) We prove that the axion as a coherently oscillating scalar field acts as a cold dark matter in nearly all cosmologically relevant scales. (3) We study the roles of dark energy perturbation on the large-scale structure and the cosmic microwave background radiation power spectra. ## [GC-14] Simulation of the Cosmic Near-Infrared Background from the Early Universe Kyungjin Ahn Department of Earth Science, Chosun University The diffuse near-infrared background, which has been observed by DIRBE (Diffuse Infrared Background Experiment) and IRTS (InfraRed Telescope in Space), consists of zodiacal light, radiation from low-redshift (z<6) sources, and radiation from high-redshift (z>6) sources. Radiation sources in the high-redshift universe are expected to be strong Lyman alpha line emitters, which contribute to the band of micro-meter range as redshifted lines. We use a structure-formation and cosmic reionization simulation results to produce a preliminary mock data for this cosmic near-infrared background from the early universe. We also tailor this data to fit the proposed specification of MIRIS (Multi-purpose InfraRed Imaging System), to be onboard the 3rd Korean Science Satellite. #### [GC-15] SAVE : 사용자 친화적인 천문우주학 수치모사 프로그램 윤기윤, 배현진, 윤석진 연세대학교 천문우주학과 & 자외선우주망원경연구단 천문우주학적 N-Body 시뮬레이션을 효율적으로 구동하고 (simulate), 그 결과물을 실시간으로 분석하고(analyze), 입자의 공간분포 실시간으로 시각화하고(visualize), 누구나 쉽게 실행할 수 있어 교육용(educate)으로도 활용할 수 있는 인터페이스 프로그램인 "SAVE"(Simulating, Analyzing, Visualizing, and Educating N-body)를 개발하였다. "SAVE"는 N-Body 시뮬레이션에 관련된 모든 제반 사항(즉, 인수조정, 구동조건조정, 결과확인, 분석처리, 동영상제작 등)을 직관적 조작이 가능한 GUI(Graphic User Interface) 프로그램 안에서 one-stop 방식으 로 수행할 수 있도록 함으로써, N-body 시뮬레이션에의 접근성을 획기적으로 제고하였다. "SAVE"에 내장된 N-body 시뮬레이션 알고리즘은 SuperBox Code(Fellhauer et al. 2000)이며, 독자적인 기술로 핵심 알고리즘을 개선해 약 30배의 연산속도 향상을 이루었다. "SAVE"는 GPU를 기반으로 하는 DirectX를 사용해 시뮬레이션 결과물을 별도의 후처리 없이 3차원 입체공간에실시간으로 표현할 수 있다. 이렇게 구현된 3차원 입체공간에는 가상의 카메라를 배치, 원하는 위치와 각도로 이동/회전할 수 있고, 특정한 부분을 확대/축소할 수 있으며, 연속된 결과물 중에서 원하는 단계를 빠르게 찾아 갈 수 있어 기존 공간분석에 소요되는 시간과 수고를 크게 절약할 수 있다. "SAVE"는 저자에게 요청하여 설치프로그램을 받아 사용할 수 있다. ### [GC-16] The Evolution of Satellite Dark Halos during merger Dowon Yi, Taysun Kimm, Sukyoung K. Yi Department of Astronomy, Yonsei University We present a preliminary result of the dynamical evolution of the satellite halo during halo merger. For this purpose, we have performed a set of numerical n-body simulations using the GADGET2 code. We adopt the NFW or the Hernquist density profile as the halo models. Our simulations cover a wide parameter space in terms of mass ratio (Msat/Mhost), energy, and eccentricity. We find that the mass-loss of the satellites is primarily affected by the orbital parameter and the shape of the host halo potential, whereas mass ratio has a minor effect for each orbital period. Interestingly, the fractional mass-loss turns out to be nearly the same for each period. We also find that the shape of the host halo potential mainly determines the merging time-scale. We will discuss how internal structure of the satellite halo changes during merger. ## [GC-17] The Satellite Overquenching Problem Sukyoung K. Yi and Taysun Kimm Department of Astronomy, Yonsei University Satellite galaxies in groups and clusters show much more rigorous star formation activities compared to central galaxies. This comes from two effects: one is that some satellites are late type while centrals are mostly early type, the other is that even among the early types alone satellites show more star formation than centrals do. However, this empirical fact is reproduced by none of the realistic galaxy formation models built from theory ab initio. We call this 'the satellite overquenching problem'. We believe that this shortcoming of models is due to the currently-inaccurate prescriptions on the supply and stripping of hot gas on the satellites while they are accreted to the cluster/group halo. We present a new but preliminary solution to this problem, considering Ram pressure, tidal stripping and stellar mass loss realistically. ### ■ Session : 태양계 (SS) 4월 29일(수) 09:00 - 10:30 제2발표장 ## [SS-01] Integrated ray tracing simulation of spectral bio-signatures from high resolution 3D earth model Dongok Ryu¹, Jinsuk Hong², Soomin Jeong¹, Yukyeong Jeong¹, Jae-Min Lee³, Sun Jeong Ham¹ and Sug-whan Kim¹ ¹Global Space Optics Laboratory, Department of Astronomy, Yonsei University, Korea, Republic of ²I&A Technology, Sung-Nam, Korea, Republic of ³Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, United Kingdom A new Integrated Ray tracing (IRT) model capable of computing various spectral bio-signatures of the Earth is reported. The model includes the Sun, the full 3D earth and moon, and a hypothetical optical instrument, all combined into single ray tracing environment in real scale. The high resolution 3D earth surface is defined using GSHHS coastal line data, realistic reflectance and BSDF characteristics depending on wavelength, and vegetation types and their distributions. Using the in-house designed space optical instrument, we then examined the model validity by simulating earth observation from both L1 halo and Moon orbits respectively. This is followed by the derivation of phase dependent disk averaged spectra, light curves and NDVI indexes, leading to construction of the observed disk averaged spectra at the instrument detector plane. The details of model and computational procedure are presented with the simulation results. #### [SS-02] MMT 시계열 관측 자료를 이용한 소행성 검출 및 광도곡선 분석 배영호^{1,2}, 변용익¹, 장서원^{1,2}, 임홍서² ¹연세대학교 천문우주학과 ²한국천문연구원 MMT 6.5미터 대형광학망원경을 이용하여 얻어진 시계열 영상자료를 대상으로 소행성 관측연구가 진행 중이다. 전체자료의 일부에서 약 120여 개의 소행성을 검출하였고, 이들에 대한 정밀측광을 수행하여 각 소행성들의 광도곡선을 얻었다. 시계열 영상자료 전체적으로는 약 300개 정도의 소행성이 촬영되었을 것으로 추정된다. 소행성의 광도곡선은 광학관측으로 소행성의 회전율(spin rate)을 측정할 수 있는 중요한 자료이다. 소행성 광도곡선분석에 대한 국외의 선행연구 결과에 따르면, 소행성의 회전율