개선된 퍼지 추론 규칙을 이용한 색채 정보 인식에 관한 연구

A Study on Color Information Recognition with Improved Fuzzy Inference Rules

  • 우승범 (신라대학교 컴퓨터정보공학부) ;
  • 김광백 (신라대학교 컴퓨터정보공학부)
  • Woo, Seung-Beom (Dept. of Computer Information Engineering, Silla University) ;
  • Kim, Kwang-Baek (Dept. of Computer Information Engineering, Silla University)
  • 발행 : 2009.05.22

초록

RGB 모델을 통한 정적인 추론 규칙을 적용한 기존의 색채 정보 인식 방법은 RGB모델이 가지는 인간 시각과의 괴리감과 특정한 환경에서만 적용할 수 있는 문제점이 있다. 본 논문에서는 HSI 모델을 적용하여 색채에 대한 인간 인식 과정과 유사한 형태의 추론 방식과, 사용자에 의해서 추론규칙을 추가, 수정, 삭제 할 수 있는 방법을 제안한다. 본 논문에서는 H, S, I 각각의 소속구간에 대하여 H는 Sine, Cosine 함수를 사용하여 소속구간을 설계하였으며, S, I는 삼각 타입의 소속 함수로 설계하였다. 설계된 각각의 소속구간에 대하여 소속구간 병합을 적용하여 소속도를 계산하고, 계산된 결과들은 미리 제시된 추론규칙에 적용하여 색채를 추론한다. 제안된 두 가지 방법을 적용하여 실험한 결과, 기존의 방법보다 제안된 방법이 비교적 직관적이며 효율적인 형태로 결론을 도출할 수 있음을 확인하였다.

Widely used color information recognition methods based on the RGB color model with static fuzzy inference rules have limitations due to the model itself - the detachment of human vision and applicability of limited environment. In this paper, we propose a method that is based on HSI model with new inference process that resembles human vision recognition process. Also, a user can add, delete, update the inference rules in this system. In our method, we design membership intervals with sine, cosine function in H channel and with functions in trigonometric style in S and I channel. The membership degree is computed via interval merging process. Then, the inference rules are applied to the result in order to infer the color information. Our method is proven to be more intuitive and efficient compared with RGB model in experiment.

키워드