A Statistically Downscaling for Projecting Climate Change Scenarios over the Korean Peninsula

한반도지역에 대한 미래 기후변화 시나리오의 통계적 상세화

  • 신진호 (기상청 국립기상연구소 기후연구과) ;
  • 이효신 (기상청 국립기상연구소 기후연구과) ;
  • 권원태 (기상청 국립기상연구소 기후연구과) ;
  • 김민지 (기상청 국립기상연구소 기후연구과)
  • Published : 2009.05.21

Abstract

온실가스 증가에 따른 미래 기후변화가 수자원에 미치는 영향을 평가하기 위하여 전구기후모델(AOGCM)의 기온과 강수 자료를 이용하여 한반도 지역에 대한 통계적 규모 상세화(statistical downsacaling, SDS) 기법을 개발하였다. 개발된 기법은 Cyclostationary Empirical Orthogonal Function (CSEOF) 분석과 회귀분석을 결합한 것으로 관측과 AOGCM 시계열의 통계적 상관성을 이용하고 있다. 20세기말(1973-2000) 동안의 광역규모의 기온(ECMWF)과 강수량(CMAP) 및 AOGCM의 기온과 강수량 자료에 통계적 상세화 기법을 적용하고 비교함으로써 이 기법의 유효성을 검증하였는데, 상세화된 기온과 강수량 자료는 관측된 계절변동성과 월변동성을 잘 모사하였다. 특히, 여름철 관측에 비해 저평가된 AOGCM의 강수량 크기와 변동성이 상세화를 통해 관측치에 근접하게 되었다. AOGCM의 미래 강수량 변화는 21세기 후반에 계절적으로 봄과 여름에 증가할 것을 예상되었다. 상세화된 AOGCM의 강수는 겨울을 제외한 모든 계절에서, 특히 여름철에 가장 많이 증가할 것으로 전망되었다. AOGCM의 미래 기온변화는 21세기 후반으로 갈수록 상승하며, 계절적으로 겨울철의 기온 상승폭이 더 클 것으로 전망되는데, AOGCM을 상세화한 결과에서는 겨울과 더불어 여름에도 기온 상승폭이 클 것으로 전망되었다. 개발된 기법은 역학적 결과와 관측과의 통계적 상관성을 이용하기 때문에 광역규모의 기후적 특성뿐만 아니라 한반도 지형 등 지역적 특성도 모두 반영함과 더불어 광역규모의 자료를 빠른 시간내에 효과적으로 상세화시킬 수 있는 장점도 지닌다. 한편 상세화에 사용된 CSEOF의 모드수 등에 따른 불확실성 등은 통계적 상세화 과정에 개선될 여지가 남아있음을 보여준다.

Keywords