A Study on the Application of Maintenance for Rolling Stock

Lee, Kang-Sung
Sohn, Woong
Kang, Chan-Yong

ABSTRACT

At the Rolling-stock, most important thing is thorough maintenance for safety as a mass transit. Recently, many studies of cost down method and acquisition of high reliability have being progressed with considering of safety. Maintenance cost is closely relative to the preventive maintenance. But generally the preventive maintenance is decided in compliance with an experience. So the study of cost down method at the preventive maintenance is difficult. In this study, many results of effectiveness and optimization for the preventive maintenance are checked. Then, it is possible that efficiency preventive maintenance method will be able to suggest.

1. 서 론

많은 수의 승객을 수송하는 도시철도는 무엇보다 안전이 중요시 된다. 차량과 설비의 기술적 발전이 안전성을 높이는데 크게 기여하는 것이 사실이나, 차량의 특성상 수명이 30여년이 되는 상황에서 기술적 발전을 못지지게 중요한 것은 수명기간동안 차량을 안전하고 원래의 특성을 갖도록 유지하는 활동이다. 이러한 활동에 있어 가장 큰 문제는 경제적 비용이 가는데 비용을 줄이고 합리적인 유지보수를 하기 위한 연구가 최근 활발히 진행되어 왔다.

본 논문에서는 차량의 각 부품 공급업체가 제공한 고장률(Failure Rate) 및 MTBF(Mean Time Between Failure)를 근거로 신뢰도 분석을 통해 예방정비 중 증정비 주기를 설정하는 방법에 대해 논할 것이다. 각 공급업체의 고장률 및 MTBF에 관한 정보는 업체의 경영에 의거한 것이고 차량 운행환경에 따라 바뀔 수 있는 것이 사실이나 이는 차량 운행 전에 증정비 주기를 설정하기 위한 중요한 분석 근거가 될 것이다.

† 편집자 : 비화원, 현대로템(주) 기술연구소, 시스템기술팀, 연구원
E-mail : ksklee83@hyundai-rotam.co.kr
TEL : (031)596-6334 FAX : (031)596-9755
‡ 비화원, 현대로템(주) 기술연구소, 시스템기술팀, 주임연구원
** 비화원, 현대로템(주) 기술연구소, 시스템기술팀, 수석연구원
2. 본론

2.1 고장률 분석

일반적으로 많은 부품을 갖는 시스템의 고장률은 그림 1의 욕조곡선을 따르는 것으로 알려져 있으며 초기고장단계는 설계, 제작, 조립상의 결함이나 사용 환경과의 부적합 등에 의해 발생하는 고장이다. 이 단계에서의 고장은 운전을 계속하는데 있어 중요한 정보를 제공한다. 우발고장단계는 시간에 따라 고장률의 변화가 없는 단계이고 마모고장단계는 구성품 등의 마모나 노화, 희로 현상 등에 의해서 고장률이 점차 증가하는 단계이다. 이 단계에서는 교환품의 교체 및 분해검사 등을 통해 고장률을 다시 낮출 수 있다.

본 논문에서는 마모고장단계 이전에 완전유지보수 중정비를 통해 고장률이 다시 일정해졌다고 가정하였다. 이와 함께 부품 공급업체 제공 고장률 데이터의 특성상 경험에 의한, 여러 차량에 쓰였던 누적된 자료이기 때문에 고장률이 일정한 것으로 가정하였으며 이를 통해 신뢰도 분석을 하였다. 아래 도표 1은 인도 DMRC(Delhi Metro Rail Corporation) 전동차에서 사용한 Gear Box의 주요부품에 관한 고장률 및 MTBF 정보이다. 이는 분해검사 주기가 6년(720,000km)인 경우 연이은 고장률 데이터이다. 본 논문에서는 주기가 3.5년(420,000km)인 경우의 분석도 같이 하였으나 고장률이 일정하다고 가정하였기 때문에 같은 고장률을 사용하여 분석하였다.

도표 1에서 나타낸 바와 같이 Gear Box의 주요 부품에 대한 전체 고장률은 2.46E-06이다. 단순 예측정비를 통해 고장지후의 발견할 수 있는 경우의 고장률은 제외하고 분해검사를 통해서만 고장검지가 가능한 경우의 고장률 합계는 1.96E-06과 같다. 예를 들어, Gear box housing의 경우 오일 누출 검사는 분해검사를 하지 않고도 가능하다. 고장률의 단순한 합계는 어느 부품 하나의 고장도 Gear Box 전체의 고장이 되기 때문이며 이는 고장률을 상수로 가정하고 지수분포를 따를 것이라는 가정과도 부합한다. 또한 FMECA(Failure Mode, Effects and Criticality Analysis)분석을 통해 차량운행의 서비스 지연을 일으키는 중요한 고장률만을 계산하면 도표2에서 나타낸 바와 같이 4.11E-07과 같다.

2.2 RCM 분석 및 신뢰도 목표

차량의 어떤 장치에 있어서 노후화 및 피로, 마모 등에 의해 고장이 발생할 것으로 판단되는 것이 분해검사를 통해서만 가능하다면 분해검사를 연계 할 것인지가 중요한 문제가 된다. 분해검사는 비용을 들어서장치의 가능성을 볼어트리며 장치의 성능도 저하시키기 때문이다. 따라서 이러한 장치에 대해서는 RCM을 통해 기대 신뢰도를 설정하고 분해검사를 시기를 결정하는 것이 바람직하다.

RCM의 적용은 우선, 기능적으로 중요한 아이템을 선정하고 이러한 아이템에 대해 논리표에 따라 효
(1) 주기적인 예방정비가 적용될 수 있고 경제적으로 가치가 있는 장치의 경우에 대한 지침
(2) 장치에 주기적인 예방정비를 수행 시 이에 따른 검수주기의 적용가능성과 효율성을 측정한 계정자 및 공급자의 사절레이터
(3) 신뢰성 데이터와 예측

(1)번 항목은 차량운영사의 이전의 비슷한 차량에 대한 운행 및 검수경험이 주요 지식이 될 것이며 개별 부품에 대한 지식은 부품 제조업체의 (3)번에 대한 항목으로서 나타나게 될 것이다. 본 논문에서는 (3)번의 신뢰성 데이터를 활용하여 주기에 대한 평가를 하였다.

각 개별 장치의 신뢰도를 설정하기 위해서는 먼저 차량운영을 통해 제공할 서비스의 질을 설정하고 이를 통해 철도 시스템의 서비스 신뢰도를 설정해야 한다. 정밀도 등[7]은 철도차량의 정량적 RAM (Reliability, Availability, Maintainability) 목표값 설정에 관한 연구에서 신뢰도에 대한 정량적 목표값 설정방법을 제시하였으며 철도시스템의 서비스 고장률을 철도기반시설물로 인한 서비스 고장률과 운영상의 서비스 고장률, 철도차량의 서비스고장률의 합으로 표현하였다. 전체 시스템 신뢰도로부터 차량제제에 서비스 신뢰도 요구도가 설정되면 이를 통해 차량의 서비스 고장과 관련된 주요 부품의 신뢰도의 목표값을 설정하는 것도 가능하다고 판단된다.

2.3 신뢰도 함수 분석

목표 신뢰도 값이 결정이 되면 신뢰도 함수를 통해 분해검사 주기를 설정하는 것이 가능하다. 앞서 각 개별 장치의 고장률은 일정한 것으로 가정하였기 때문에 고장분포는 지수분포를 따르게 된다. 따라서 고장률 $\lambda(t) = \lambda$라면, 신뢰도 함수 $R(t)$와 확률밀도함수 $f(t)$는 다음과 같다.

$$R(t) = e^{-\int_{0}^{t} \lambda(s)ds} = e^{-\lambda t}, f(t) = \lambda e^{-\lambda t}$$

이러한 신뢰도 함수에 Gear Box의 고장률을 반영하여 계산결과는 다음과 같다. 고장률은 Gear Box 전체의 고장률과 분해검사를 통해서만 고장의 예측이 가능한 경우의 고장률, FMECA 분석을 통한 차량의 서비스 시각 혹은 중대위험성을 갖고 있는 경우의 고장률로 각각의 경우에 대해 분석하였다.

도표2. Gear Box 중요위험 원인 고장률

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Failure rate (failure/hr)</th>
<th>MTBF (hr/failure)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Crowned tooth coupling</td>
<td>3.17E-07</td>
<td>3,154,574</td>
</tr>
<tr>
<td>2</td>
<td>Emergency arrester</td>
<td>1.13E-08</td>
<td>88,495,575</td>
</tr>
<tr>
<td>3</td>
<td>Torque arm</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Bearing of Input shaft</td>
<td>6.38E-08</td>
<td>15,673,981</td>
</tr>
<tr>
<td>5</td>
<td>Bearing output side</td>
<td>8.55E-09</td>
<td>116,959,064</td>
</tr>
<tr>
<td>6</td>
<td>Gear wheel</td>
<td>1.01E-08</td>
<td>99,009,900</td>
</tr>
<tr>
<td>7</td>
<td>Gear box housing</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Sum</td>
<td>4.11E-07</td>
<td>2,433,090</td>
</tr>
</tbody>
</table>
그림2. 신뢰도 함수 (6년, $\lambda=2.40E-06$)

그림3. 신뢰도 함수 (3.5년, $\lambda=2.40E-06$)

그림2는 전체 고장률에 대해 6년(720,000km)까지 분해검사 없이 운행하였을 때의 결과이다. 6년체의 Gear Box의 신뢰도는 93.9%가 된다. 여기에서 6년(720,000km)은 Gear Box 업체에서 제시한 기준 분해 검사 주기이다. 그림3은 업체의 제시주기가 아닌 실제 인도 DMRC에서 수행하고 있는 분해검사 주기 3.5년(420,000km)로 계산한 결과이다. 이 경우 Gear Box의 신뢰도는 96.4%로 유지할 수 있음을 알 수 있다. 여기서 신뢰도 $R(t)$은 Gear Box의 가동시간이 t이상인 확률로 표현할 수 있다. 그림4, 그림5의 결과는 분해검사를 하지 않더라도 미리 고장의 경치가 가능한 고장률을 제외한 경우, 즉 고장률이 1.96E-06인 경우의 신뢰도 결과이다.

고장률이 1.96E-06인 경우 업체의 설정 주기인 6년에서의 신뢰도 95.0%를 보여주며 3.5년에 분해검사를 하는 조건에서는 Gear Box의 신뢰도를 97%로 유지할 수 있음을 알 수 있다. 아래 그림6, 그림7은 차량운행의 서비스지연 혹은 총대환 위험성을 갖는 경우의 고장률 4.11E-07인 경우의 결과를 보여준다. 6년에서의 신뢰도는 98.9%이며 3.5년에서의 신뢰도는 99.3%이다.

Gear Box의 더 높은 신뢰도를 얻기 위해서는 분해검사 주기를 더 앞당기거나 분해검사를 하지 않고도 고장을 감지할 수 있는 검사기법이 필요하다. 다른 방법으로는 Gear Box 계약 시에 신뢰성이 더욱 높은 부품과 재료를 사용하고 극한 상황까지 고려한 설계가 필요할 수도 있다.

2.4 초기 유지보수 계획에서의 신뢰도를 통한 유지보수 주기 설정

업체의 고장률 데이터로 분석한 신뢰도 결과에서 분해검사 주기를 3.5년으로 하였을 때 서비스 고장이 발생하지 않을 신뢰도 결과는 99.3%를 얻을 수 있었다. 그러나 3.5년이라는 주기는 99.3%의 신뢰도를
Initial Maintenance Plan
- Experiential failure rate data
- RCM analysis
- RAMS target
- Operation condition
- Maintenance task development

In Progress Maintenance Plan
- Actual failure data
- Actual operation data
- New maintenance method
- New equipments & software

그림 8. 초기 유지보수 계획 및 진행 유지보수 계획

달성해야 한다는 목표를 위해 정해졌다고 보는 차량전체의 정해진 중정비 기간과 더 관련이 있다. 차량의 중정비시에는 고가의 차량의 정비시간을 짧이고 가용성을 높이기 위해 중요 분해검사 부품에 대해서는 예비품을 교체하는 방식이 이용되고 분리된 부품은 분해검사를 거친 뒤에 다시 예비품으로서 다른 차량에 장착된다. 그러나 차량의 가용성을 높이기 위해 모든 부품의 분해검사 주기를 갈수 하는 것은 생애주기비용 측면에서 분해검사에 필요한 인력과 비용을 생각해보면 비효율적이라 할 수 있다. RCM 분석을 통해 각 장치의 기대 신뢰도가 설정되면 이를 통해 차량의 장치를 큰 유닛으로 묶어 중정비 주기를 다르게 설정할 수 있는 장치는 따로 중정비를 시행하는 것이 차량의 전체적 수명비용을 고려하면 효율적이다.

차량의 운행 전에 수립되는 초기 정비계획에서는 이러한 신뢰도를 고려하여 주기를 설정하는 것이 유용한 방안이다. 그러나 이렇게 설정된 주기는 실제의 운영환경 및 여러 변수에 의해 변경되어야 할 가능성은 높다. 그림 8에서 나타낸듯이 유지보수 계획은 고정계획이 아닌 진행계획으로서 차량의 운행이 시작되고 나서 실제 고장데이터 및 운영데이터, 새로운 기술의 전개 상태를 반영하여 지속적인 연구가 이루어져야 최적의 주기를 찾을 수 있을 것이다.

3. 결론

절도차량의 유지보수에 있어 가장 큰 비용을 차지하는 것은 정해진 주기를 갖는 예방정비활동이다. 본 연구에서는 비용을 최소화하기 위해 이러한 예방정비 중 중정비 주기를 결정하는 방법을 다루었다. 신뢰도 목표 설정을 통한 주기를 최적은 차량운영사가 목표로 하는 서비스신뢰도를 만족시키는 동시에 유지보수 비용을 최소화 할 수 있는 주기를 갖는 하나의 유용한 방법이 될 것이다. 기존 경험을 토대로 차량 전제의 효율적인 중정비 주기를 설정하는 것보다는 먼저 각 주요 장치의 중정비 주기를 설정한다면 이를 통해 좀 더 합리적인 차량 전제의 중정비 주기를 설정하는 것이 가능할 것이다. 또한 신뢰도를 결정하기 위한 중요한 데이터인 고장률은 차량의 운행 중 고장발생 시에 정확한 판단을 통해 원인을 파악하여 데이터를 추적하는 것이 중요하다.
참고문헌

2. 김민호, 송기태, 백영구, 이기서, 율화현 (2007), “효과적인 PM 업무를 위한 RCM분석대상 시스템의 선정”, 한국철도학회
3. 김종운, 박준서, 이호용, 김재훈 (2008), “철도시스템의 RAMS 중심의 유지보수 정책 결정을 위한 개념적换来”, 한국철도학회
5. IEC 62278 (2002), “Railway applications - Specification and demonstration of reliability, availability, maintainability and safety (RAMS)”
7. 정인수, 이강원, 김종운 (2008), “철도차량 정량적 선뢰성·가용성·유지보수성 (RAM) 목표값 설정에 관한 연구”, 한국철도학회