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Abstract

This paper presents how to minimize the second-order cone pro-
gramming problem occurring in the 3D reconstruction of multi-
ple views. The L∞-norm minimization is done by a series of the
minimization of the maximum infeasibility. Since the problem
has many inequality constraints, we have to adopt methods of the
interior point algorithm, in which the inequalities are sequentially
approximated by log-barrier functions. An initial feasible solu-
tion is found easily by the construction of the problem. Actual
computing is done by an iterative Newton-style update. When
we apply the interior point method to the problem of reconstruct-
ing the structure and motion, every Newton update requires to
solve a very large system of linear equations. We show that the
sparse bundle-adjustment technique can be utilized in the same
way during the Newton update, and therefore we obtain a very
efficient computation.

1 Introduction

In geometric vision problems, the L∞ norm minimization
method has been issued because it can compute the global
optimum instead of a local one [1, 2]. Many studies intro-
duce the L∞ applications: one-dimensional cameras in robotics
application[3], motion computation [4], dealing with outliers
[5, 6], increasing the computational efficiency [7, 8], and tracking
a deformable surface [9], and so on. In addition, the L∞ method
is found to solve a more general problem dealing with the rotation
parameters together with the branch-and-bound technique. Hart-
ley and Kahl [10] solves the two view motion problem under the
sense of global optimality. On the other hand, [11] or [12] try to
solve a very large scale structure and motion problem. Such as
[10], in the near future, a multi-view reconstruction problem has
a globally optimal solution by extending.

An advantage of the L∞ formulations is that any numerical
method will result in the same global minimum in principle since
the objective function is convex. Therefore, we note that the
(quasi-) convexity and simplicity in implementation are the key
to the fast growth and expansion of the L∞ method.

This paper studies a feasibility test algorithm with the bisection
method given in Algorithm 1. Minimizing any L∞ error norm
using the bisection method has been worked since the paper of
Kahl [2]. The feasibility test is the core problem to minimize
the maximum residual error (γ in Algorithm 1), but most of the
previous works have used some tools such as SeDuMi, and have

Algorithm 1 Bisection method to minimize L∞ norm
Input: initial upper(U )/lower(L) bounds, tolerance ε > 0.

1: repeat
2: γ := (L+ U)/2
3: Solve the feasibility problem (12)
4: if feasible then U := γ else L := γ
5: until U − L ≤ ε

not considered it enough. An efficient algorithm for the feasi-
bility problem will result in high speed computation of the L∞
optimization. To reduce the time consuming and computation-
ally demanding, this paper focuses on the feasibility problem for
the structure and motion (SAM) under the assumption of known
rotation.

In this paper, we first present how to formulate the feasibil-
ity problem of SAM. We show a few computational methods for
the feasibility problem and choose the method that minimizes
the maximum infeasibility, and provide its mathematical formu-
lation. In fact, the minimization of the maximum infeasibility is
a part of the so-called phase-I methods since it is a preliminary
stage to check the feasibility constraints of a given convex prob-
lem; if the problem is feasible, it finds a feasible solution [13].

Actually, we can minimize the maximum infeasibility numer-
ically with various algorithms. We focus on two methods in this
paper: the barrier method and the primal-dual potential reduction
interior-point method. Indeed, Newton updating schemes start-
ing from an initial solution are the foundation of two methods.
We show that the Newton update in the barrier method has all
the same sparse structure as the bundle-adjustment [14, 15]. We
also present how to find an initial solution for the barrier method.
As mentioned [13], the primal-dual potential reduction method
outperforms the barrier method in various areas. However, we in-
troduce an additional linear inequality constraint which destroys
the sparse structure compared with the barrier method to get an
initial solution easily. We show that the matrix inversion lemma
is applicable, allowing us to use all the same sparse matrix tech-
nique. In order to implement the application of the two method,
it is not necessary to compute an initial point since it has been
studying in many geometric vision problems [14]. Therefore, we
can use the good quality initial solution to start the optimization.
This is another advantage when we use the L∞ optimization.

We present the feasibility test algorithm for SAM and some
preliminary definitions in section 2. In section 3, we discuss the
sparse structure for the case of the second-order cone program-
ming. In section 4, we show how to adopt the primal-dual algo-
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rithm instead of the barrier method without destroying the sparse
structure. Some experimental results are given in Section 5. We
bring to a conclusion int the last section.

2 SAM and the Feasibility Problem
Let [uki1, uki2]> be an image measurement of the i-th point Xi

in 3D through the k-th camera Pk = [Rk|tk], the residual vector
is defined by

eik =
[
uik1 −

r>k1Xi + tk1

r>k3Xi + tk3
, uik2 −

r>k2Xi + tk2

r>k3Xi + tk3

]>
, (1)

where r>kn is the n-th row vector of Rk, and tkn the n-th com-
ponent of the vector tk. N and K are the numbers of 3D points
and cameras, respectively. M (M ≤ NK) is the total number of
image measurements, and the index set IM is the set of the (i, k)
pairs (|IM | = M ).

Before we precede further, the gauge (coordinate system) must
be chosen. We select the same gauge as [2]; the last 3D point is
set to [0, 0, 0], and the last component of the translation tK3 = 1,
that is, tK = [tK1, tK2, 1]>. The number of total parameters is
then P = 3(N − 1) + 3K − 1. θ is a column vector of all the
unknown parameters

θ = [X1, . . . ,XN−1, t1, . . . , tK−1, tK1, tK2]>, (2)

the residual vector eik can be written as

eik =
[
a>ik1θ + bik1

c>ikθ + dik
,

a>ik2θ + bik2

c>ikθ + dik

]>
, (3)

where aikn, bikn, n = 1, 2, cik, and dik are all coefficient vectors
and scalars composed of uikn and the elements of Rk. Note that
aikn has only five non-zero elements:

a>ikn(3i− 2 : 3i) = uiknr>k3 − r>kj (4)

a>ikn(3(N − 1) + 3k) = uikn (5)
a>ikn(3(N − 1) + 3k − n) = −1 (6)

That is, a>ikn(3i − 2 : 3i) has three coefficients for Xi,
a>ikn(3(N−1)+3k−n) has one for tkn, and a>ikn(3(N−1)+3k)
has one for tk3. Similarly, non-zero elements in the vector cik are:

c>ik(3i− 2 : 3i) = r>k3 (7)
c>ik(3(N − 1) + 3k) = 1 (8)

As we know in [7], theL2 norm ‖eik‖2 is a quasi-convex function
and also is a pseudo-convex function. Its L∞ norm ‖eik‖∞ is
also a quasi-convex function because L1 norm of each of the two
functions ∣∣∣∣a>ik1θ + bik1

c>ikθ + dik

∣∣∣∣ and
∣∣∣∣a>ik2θ + bik2

c>ikθ + dik

∣∣∣∣ (9)

is of quasi-convex [8, 10]. Given a positive constant γ represent-
ing the maximum residual allowable, the solution space of θ is
given by the intersection of all the constraints:

‖eik‖ ≤ γ , ∀ik ∈ IM . (10)

Therefore, the L∞ error minimization problem is given by:

minimize γ
subject to ‖eik‖ ≤ γ, ∀ik ∈ IM

(11)

To find the optimal solution, we can use the bisection method
presented in Algorithm 1, in which the following feasibility test
problem is solved repeatedly

find θ
subj. to ‖Aikθ + bik‖ ≤ γ(c>ikθ + dik),∀ik ∈ IM

(12)

where Aik = [aik1,aik2]>, a 2×P matrix, and bi = [bik1, bik2]>,
a 2 dimensional vector. The feasibility test problem can be com-
puted by a few computation methods. The one we consider in this
paper is a method of minimizing the maximum infeasibilities. An
auxiliary variable s is introduced to find a strictly feasible solu-
tion of the inequalities or determine that none exists:

min s
s.t. ‖Aikθ + bik‖ ≤ γ(cik

>θ + dik) + s, ∀ik ∈ IM
(13)

Note that the variable s represents a bound on the maximum in-
feasibility of the inequalities, and the goal of this problem is to
drive s below zero. If s ≤ 0 after the minimization, the problem
is feasible, and a solution θ may be retrieved. Otherwise, s > 0
then the constraint set is infeasible, having an empty intersection.

We can re-write the problem in the standard form of convex
optimization using augmented coefficient matrices. Let us con-
struct the 2 × (P + 1) matrix Ãik = [Aik|0] by augmenting the
matrix with a column of zeros, and P + 1 dimensional vectors
c̃ = [γc>, 1]> and θ̃ = [θ>, s]>. Then we have

min f>θ̃
s.t. ‖Ãikθ̃ + bik‖ ≤ c̃>ikθ̃ + γdik,

c̃>ikθ̃ + dik ≥ 0
(14)

where f = [0, 1]> is a (P +1) vector in which all components are
zero except for the last one. Note that the problem is a second-
order cone programing if the L2 norm function is adopted; it is a
linear programming if L∞ residual (9) is used.

3 Second-order cone programming
When we use L2 norm in (14), we are come up with an SOCP. In
this case, the barrier method adopts the generalized logarithm ψ
of degree two for the log-barrier function

ψ(x) = log
(
x2

3 − x2
1 − x2

2

)
(15)

whose domain is defined by the second-order cone

dom(x) = {x ∈ R3|
√
x2

1 + x2
2 < x3} . (16)

The barrier method minimizes the following unconstrained ob-
jective function while iteratively increasing t as before:

min E := tf>θ̃ −
∑
ik

log(e2ik3 − e2ik1 − e2ik2) (17)
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where eik = [eik1, eik2, eik3]> is defined by

eik = [ã>ik1θ̃ + bik1, ã>ik2θ̃ + bik2, c̃>ikθ̃ + γdik]> (18)

Now, let us define Āik of size 3× (P + 1) as:

Āik = [ãik1, ãik2, c̃ik]> . (19)

The objective in (17)is then minimized by a Newton’s method,
the hessian is now given by

HSOCP =
∑
ik

Ā>ikHikĀik (20)

where Hik = ∇2ψ(eik) is of size 3 × 3. Examining the shape of
the hessian matrix, we meet a sparse structure again:

Result 1 The sparse structure of the hessian (20) is the same as
the one developed for the multiview bundle-adjustment in [15,
14]. We have the additional weighting matrices Hik, contrary to
[15, 14], but they do not change the sparse shape of the hessians
HSOCP, respectively.

3.1 Initial solution
A solution θ̃(0) can be obtained easily:

θ(0) = 0 and s(0) = max{‖bik‖2 − dik}+ c, c > 0. (21)

3.2 Stopping criterion
In [13], the stopping criterion for this SOCP is 2M/t < ε from
the theory of convex optimization of the second-order cone. 2,
M , and ε represent the degree of the generalized logarithm ψ, the
number of inequalities, and the tolerance gap between the actual
optimum and the true optimum, respectively.

4 Primal-dual interior-point method
In this section, we introduce a more efficient method for solving
our SOCP. It is the primal-dual potential reduction interior-point
method of Nesterov and Nemirovsky[16]. The method is used in
[17] to solve a variety of application problems as the numerical
computation method of SOCP. In general, primal-dual interior-
point methods can exhibit better than linear convergence. There-
fore, they are often more efficient than the barrier method. This
paper presents efficiency of the primal-dual interior-point meth-
ods compared with the barrier method in various areas [13]. Our
goal in this section is to show that the sparse structure can still be
retained by using the matrix inversion lemma.

The primal-dual potential reduction method minimizes both of
the primal and dual variables at the same time, compared to the
barrier method given in previous sections which updates only the
primal variable θ̃ in minimizing the error function (17). The pri-
mal problem (14) is re-written below:

min f>θ̃
s.t. ‖Ãikθ̃ + bik‖2 ≤ c̃>ikθ̃ + γdik, ∀ik ∈ IM

(22)

where the linear inequality is omitted since it is superfluous. The
dual problem is given by

max −
∑

ik(b>ikzik + γdikwik)
s.t.

∑
ik(Ã>ikzi + c̃ikwik) = f

‖zi‖2 ≤ wi, ∀ik ∈ IM
(23)

The vectors zik ∈ R2 and wi ∈ R are the dual optimization
variables. λ>ik = [z>ik, wik], and z and w be the whole set of zik’s
and wik’s, respectively.

The potential function (24) below of the primal-dual potential
reduction method is minimized starting at initial primal and dual
solutions θ̃(0), z(0),w(0):

ϕ(θ̃, z,w) = (2M + ν
√

2M) log η

+
∑
ik

(ψ(eik) + ψ(λik))− 2N logN (24)

where ν ≥ 1 is an algorithm parameter, and η is the duality gap
the difference between the primal and dual objectives:

η(θ̃, z,w) = f>θ̃ +
∑
ik

(b>ikzik + γdikwik) . (25)

The theory declares that if ϕ → −∞ then η → 0 and (θ̃, z,w)
approaches optimality [16].

4.1 Initial solutions
In (21), we already have shown how to find a initial solution θ̃(0).
An additional linear bound is included in the original problem To
find a dual solutions, z(0) and w(0) without affecting the problem
itself; this is called the big-M procedure. The dual of the modified
problem can be computed such as a pair of dual solutions. The
modified problem is as follows:

min f>θ̃
s.t. ‖Ãikθ̃ + bik‖2 ≤ c̃>ikθ̃ + γdik, ∀ik ∈ IM∑

ik(c̃ikθ̃ + dik) ≤MB

(26)

and its dual is

max −
∑

ik(b>ikzik + dik(wik − β))− βMB

s.t.
∑

ik(Ã>ikzi + c̃ik(wik − β)) = f
‖zi‖2 ≤ wi, ∀ik ∈ IM
β ≥ 0

(27)

Note that the main problem is the same as the original one that
constant MB is large enough. In fact, while we optimize this
problem, MB is iteratively increased to keep the bound inactive.
Let us put B = MB −

∑
ik(c̃ikθ̃ + dik) and c̃B =

∑
ik c̃ik.

We first solve the linear constraint equation in (27) to find the
initial dual solution after setting vik = wik − β; this yields z(0)

ik

and vik. Because the system is under-determined, a least-norm
solution can be used. Then, from the differences δik = ‖z(0)

ik ‖2−
vik, we can find a strictly feasible solution

β(0) = max{max{δik}, 0}+ c, c > 0 , (28)

and we have w(0)
ik = vik + β(0) as a result.
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4.2 Computing the search directions
Both of the primal and dual variables of the primal-dual potential
reduction algorithm are updated via a Newton’s method. The ∆θ̃
is updated by solving the following

Hpd ∆θ̃ = −g (29)

where Āik is defined in (19), and g is given by

g = ρf + Ā>ik∇ψ(eik) + c̃B/B (30)

and the hessian Hpd is given by

Hpd =
∑
ik

Ā>ikHikĀik +
1
B2

c̃B c̃>B (31)

= HSOCP +
1
B2

c̃B c̃>B . (32)

The dual direction ∆λik is then computed using ∆θ̃:

∆λik = −ρλik −∇ψ(eik)−∇2ψ(eik)Āik∆θ̃ (33)

which gives ∆zik and ∆wik. The outline of the algorithm is thus
as follows [17]:

Algorithm 2 Primal-dual potential reduction algorithm

Input: strictly feasible (θ̃, z,w), tolerance ε > 0.
1: repeat
2: Find primal and dual search directions by computing (32)

and (33).
3: Plane search. Find p, q ∈ R that minimize ψ(θ̃ +

q∆θ̃, λik + q∆λik)
4: Update. θ̃ := θ̃ + p∆θ̃, λik := λik + q∆λik.
5: until η(θ̃, z,w) ≤ ε

4.3 Sparsity in getting ∆θ̃

Note that the hessian HSOCP has the sparse structure but the last
term c̃B c̃>B has not in (32). A blind computation must deal with
the symmetric positive definite but non-sparse matrixHpd of size
(P + 1) × (P + 1), which becomes unmanageable easily in our
problem of multi-view SAM. Fortunately, exploiting the matrix
inversion lemma allows us to utilize the sparse structure as before.
The matrix inversion lemma for our case is as follows:(

H +
c̃c̃>

B2

)−1

= H−1−H−1c̃
(
B2 + c̃>H−1c̃

)−1c̃>H−1 (34)

We can solve the following two linear equations efficiently using
the sparse structure of HSOCP :

HSOCPu = g (35)
HSOCPv = c̃B (36)

from which we have the solution of (29):

∆θ̃ = u− vc̃>Bu
B2 + c̃>Bv

. (37)

Note that in (37), it consists only of the vector inner products, a
scalar division and some additive operations. In addition, solving
the two equations (35) and (36) can be done simultaneously.

Result 2 During the Newton update in the primal-dual potential
reduction algorithm, the sparse structure still remains with the
help of the matrix inversion lemma (34).

5 Experiments

In this paper, we show only a very brief performance comparison
between two optimizations - with and without exploiting the spar-
sity. Because the efficiency of the computation with and without
the sparsity is in [15, 14].

We implemented the primal-dual potential reduction interior-
point algorithm based on the C implementation of [17]. Compu-
tation of the sparse Cholesky decomposition was done using the
package called CHOLMOD [18, 19, 20, 21, 22, 23].

First, we generated a synthetic data of 200 measurements (20
points in 10 views)and contaminated it with a Gaussian noise.
Therefore, the number of parameters for the structure, motion,
and the maximum infeasibility was 87; 3× (20− 1), 3× 10− 1,
and 1, respectively. We tested two optimizations. The optimiza-
tion without sparse computation took 24.5 seconds; matrix size
was 87 × 87, and solved for each Newton update. The opti-
mization with sparse computation took 1.8 seconds; matrix size
was 30 × 30, and each Newton update involved 57 inversions of
3 × 3 matrices. The computation exploiting the sparsity for this
instance of input data was 13.6 times faster than the computation
without the sparsity. In the next experiment, we increased the
measurement data up to 750 (150 points in five views). We re-
peatedly tested 100 times using sets of randomly generated data.
The optimization without sparse computation took 2,230seconds
on average; whereas it took 20 seconds with sparse computation,
showing 112 (= 2, 239/20) times faster execution time on aver-
age than the computation without the sparsity.

6 Conclusion

We showed to solve the feasibility test problem with two interior-
point algorithms: the barrier method and the primal-dual poten-
tial reduction method. The interior-point algorithms were based
on the iterations of a Newton update. It was required to deal with
a very large system of linear equations for the Newton update to
solve the problems of structure and motion using known rotation.
We also explained the sparse computation technique. This tech-
nique is applicable to LP and SOCP of the L∞ formulations. The
formulation of the feasibility problem that minimizes the maxi-
mum infeasibility leads to the sparse structures. Because of the
interior-point algorithms, we needed the sparse structure. The
interior-point algorithm started from initial solutions that could
be obtained easily by problem constructions. Sparse computa-
tion techniques appropriately devised for each of the problems
were used to solve the system of equations, and the sparse struc-
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ture is very much similar to the one developed for the bundle-
adjustment.

In order to reduce the computation time of the bisection algo-
rithm for the L∞ optimization, it is necessary to incorporate our
upgraded low-level computation technique and high-level tech-
niques which was presented in [2] or [8]. These days, we are
facing with new algorithms of dealing with rotation parameters
under the framework of branch-and-bound [10]. A fast L∞ opti-
mizer specially designed for the structure and motion problem is
necessary to develop a global optimization method with a reason-
able computational speed for multiple view reconstruction. For
this reason, we hope that our paper should be helpful for a glob-
ally optimal structure from motion.
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