감마선 조사장치의 조사시간 오차 측정

서장수 · 하석호* 한수원(주) 원자력교육원 · 한국표준과학연구원* E-mail: sissis@khnp.co.kr

중심어 (keyword): 전자개인선량계, 감마선 조사장치, 표준조사

서 론

감마선 조사장치는 감마선 서베이미터, 전자개인선 량계(ADR) 및 이온전리함 등의 방사선계측장비를 교정하기 위한 표준기로서 납으로 차폐된 선원 함에 장착된 Cs-137 등의 선원을 공기압 등을 이용, 인출하여 기준 선량을 조사하는 장비이다.

전자 개인 선량계(ADR) 및 직독식 개인피폭 선량계 등 집적 선량을 측정하는 장비를 교정하기 위해서는 정해진 시간 동안 감마선을 조사할 수 있어야 하는데 조사장치의 기계적인 특성 및 타이머의 분해능 등에 따라 설정된 조사시간과 실제 조사되는 시간과의 오차가 발생할 수 있으며, 정확한 측정을 위해서는이를 적절히 보정하여야 한다.

조사시간 오차를 측정하는 방법에는 일정한 거리에 이온 전리함을 세팅하고 시간을 늘려가며 측정한 결과 (전하량)를 선형 회귀시켜 그 값이 '0'이 되는 시간을 산출하는 방법과, 서로 다른 두개 이상의 시간 조합으로 측정된 전위차(V)를 비교하여 계산하는 방법이 있다.

본 실험에서는 후자의 방법을 이용하여 원자력발전 소에서 사용하는 감마선 조사장치의 조사시간 오차를 측정하였으며, 집적선량 측정에 미치는 영향을 평가하 였다.

실험방법

실험은 감마선 조사장치에 내장된 두개의 선원을 사용하여 다음의 방법으로 수행하였다.

첫째, 이온 전리함을 감마선 조사장치로부터 1 000 mm의 거리에 위치시킨 후 이온 전리함의 중심점을

감마선 조사장치의 레이저와 수직이 되도록 정렬시켜 중심점으로 설정하였다.

둘째, 이온화 전류 측정 프로그램을 이용하여 BKG 를 150 초간 5회 측정하여 평균하였다.

셋째, 이온화 전류 측정 프로그램에 150 초 5회 측정을 설정한 후 조사장치의 타이머를 이용하여 81.4 TBq 선원을 100 초간 인출하여 5회 조사, 측정된 값을 평균하였다. 이 때 100초는 임의로 설정한 시간이다.

넷째, 이온화 전류 측정 프로그램에 150 초 5회 측정을 설정한 후 조사장치의 타이머를 이용하여 81.4 TBq 선원을 50초 인출한 후 다시 50초를 인출하는 방법으로 100초를 인출하여 각각 5회 조사, 측정된 값을 평균하였다. 이 때 50 초간 2회로 설정한 것은 조사시간 설정의 편의를 위한 것이며, 합이 100초인 경우 어떠한 설정(40 초 + 60 초 등)도 최종 결과에 영향을 미치지 않는다.

같은 방법으로 3.7 TBq 선원에 대하여 동일한 측정을 수행하였다.

이 때 측정된 값은 캐패시터에 축적된 전하에 의한 전 위차이며, BKG를 보정하여 최종 측정값을 산출하였다.

측정에 사용된 챔버는 체적 30 ml의 구형 챔버이 며, -300 V 의 고전압을 챔버 벽에 인가하여 측정하였다. 또한 조사 범의 세기 및 챔버 체적을 감안하여 100 초 측정에 적당한 99 327 pF 및 5 659 pF 용량의 캐패시터를 81.4 TBq 및 3.7 TBq 측정에 각각 사용하였다.

이온화 전류는 전리함의 종류, 사용된 캐패시터에 따라 달라지며, 같은 전리함 및 캐패시터를 사용할 경 우 측정 시간에 관계없이 이온화 전류는 같아지게 된 다. 즉 아래의 식이 성립하게 된다.

$$I_1 = I_2 = \frac{CV_1}{t_1} = \frac{CV_2}{t_2} - \dots$$
 (1)

여기서 t_1 및 t_2 는 측정 시간을 나타내며, V_1 및 V_2 는 각각 t_1 및 t_2 시간 동안 캐패시터에 축적된 전하에 의하여 형성된 전위차이다.

본 실험에서 설정된 t_1 및 t_2 는 이론상으로는 100초이나 실제로 t_1 에는 1회의 조사시간 오차(Δt)가 포함되어 있으며, t_2 에는 2회의 조사시간 오차($2\Delta t$)가 포함함되어 있다. 즉 아래의 식이 성립하게 된다.

$$\frac{CV_1}{100 + \Delta t} = \frac{CV_2}{50 + 50 + 2\,\Delta t} \quad --- (2)$$

위 식을 Δt 에 대하여 풀면 아래 식과 같으며, 측정을 통하여 구한 V_I 과 V_2 를 대입하여 Δt 를 구할수 있다.

$$\Delta t = 100 \times \frac{V_1 - V_2}{V_2 - 2 V_1}$$
 ---- (3)

결과 및 고찰

81.4 TBq 에 대한 100초 5회 측정한 결과를 표 1에 나타내었다. 표에 나타난 측정 시간은 전류측정 프로그램 상의 설정 시간이며, 실제 조사는 조사장치 타이머에 세팅한 100초 동안 각각 수행되었다.

측정횟수	$V_{1(i)}$ (V)	측정시간(초)	측정전류(A)
1	0.89430	151.156	6.02E-10
2	0.89524	151.156	6.02E-10
3	0.89545	151.156	6.02E-10
4	0.89472	151.156	6.02E-10
5	0.89431	151.156	6.02E-10
평균	0.89480		

표 1 측정결과 (81.4 TBq 100 초)

마찬가지로 50 초 + 50 초에 대한 측정 결과를 표 2 에 나타내었으며, 실제 조사시간은 150 초 설정 시간 중 50 초 + 50 초이다.

일반적으로 BKG 측정시는 저 용량의 캐패시터를 사용하나, 본 실험에서는 동일한 조건을 갖추기 위하여 본 측정에서와 같은 용량의 캐패시터를 사용하여 측정하였으며, 측정된 결과를 표 3에 나타내었다.

최종 측정값(V_I 및 V_D 은 최초 측정값($V_{I(i)}$ 및 $V_{I(i)}$)에서 BKG 값($V_{I(b)}$)을 보정하여 산출하며 3.7 TBq 선원 또한 같은 절차를 거쳐 산출한다.

측정횟수	$V_{2(i)}$ (V)	측정시간(초)	측정전류(A)
1	0.89901	151.156	6.05E-10
2	0.89995	151.156	6.05E-10
3	0.90014	151.156	6.05E-10
4	0.89977	151.156	6.05E-10
5	0.89958	151.172	6.05E-10
평균	0.89969		

표 2 측정결과 (81.4 TBg 50초 + 50 초)

측정횟수	$V_{(b)}$ (V)	측정시간(초)	측정전류(A)
1	-0.00003	151.156	-2.02E-14
2	-0.00002	151.156	-1.35E-14
3	-0.00001	151.156	-6.73E-15
4	-0.00002	151.156	-1.35E-14
5	-0.00002	151.156	-1.35E-14
평균	-0.00002		

표 3 측정결과 (BKG 99327 pF 150 초)

표 4에 81.4 TBq 및 3.7 TBq 선원에 대한 측정 결과를 요약하였다.

측정선원	$V_1(V)$	$V_2(V)$	∆ t (초)
81.4 TBq	0.894824	0.899710	0.55
3.7 TBq	0.763198	0.766470	0.43

표 4 조사시간 오차(△ t) 산출결과

측정결과 81.4 TBq 및 3.7 TBq 선원에 대한 조사시간 오차는 각각 0.55 초 및 0.43 초로 판명되었으며 이는 100 초를 조사하고자 할 경우 각각 99.45 초 및 99.57 초를 설정하여야 함을 의미한다.

결론

측정 결과 산출된 조사시간 오차는 1초 미만의 값으로 감마선 조사장치 타이머의 최소 분해능이 1초인점을 감안할 때 실제로 보정할 수 있는 값은 아니며, 조사시간 오차를 집적선량 측정 장비(ADR 등)의 교정 시 불확도 요인으로 평가할 경우 200초 이상으로조사시간을 설정한다는 가정 하에 각각 0.2 % 및 0.1% 미만으로 산출되어 전체 불확도에 미치는 영향은미미한 것으로 판단된다.

참 고 문 헌

- Standard imaging, Exradin Ionization Chamber User's manual, pp 5-8
- 2. Glenn F. Knoll, Wiley, 2000, Radiation detecton and measurement 3rd, pp 138-140