# Three-Switch Active-Clamp Forward Converter with Low Voltage Stress 

Ki-Bum Park*, Chong-Eun Kim**, Gun-Woo Moon*, and Myung-Joong Youn*<br>* Department of Electrical Engineering and Computer Science, KAIST, Daejeon, Republic of Korea<br>${ }^{* *}$ Samsung Electro-Mechanics Co. Ltd, Suwon, Republic of Korea


#### Abstract

A conventional active-clamp forward (ACF) converter is a favorable candidate in low-to-medium power applications. However, the switches suffer from high voltage stress, i.e., sum of the input voltage and the reset capacitor voltage. Therefore, it is not suitable for high input voltage applications such as a front-end converter of which the input voltage is about $400-V_{d c}$. To solve this problem, three-switch ACF (TS-ACF) converter, which employs two main switches and one auxiliary switch with low voltage stress, is proposed. Utilizing low-voltage rated switches, the proposed converter is promising for high input voltage applications with high efficiency and low cost.


## 1. Introduction

To minimize the size and weight of pulse-width-modulation (PWM) converters, high switching frequency is generally required. However, the hard switching of power switch results in high switching loss and high EMI noise. Therefore, various types of soft switching DC/DC converters have been proposed [1],[2]. Among them, the active-clamp forward (ACF) converter, which employs active-clamp circuit (ACC) for transformer reset, shown in Fig. 1 is one of the most popular topologies in low-to-medium power applications because of its simple structure, small transformer size, and zero-voltage switching (ZVS) ability [1]-[4].

Both switches of the ACF converter suffer from high voltage stress, i.e., sum of the input voltage $\mathrm{V}_{\mathrm{S}}$ and the reset capacitor voltage $\mathrm{V}_{\mathrm{Cc}}$, though its primary current is relatively low. Therefore, it is not suitable for high input voltage applications such as a frontend converter of which the input voltage is around $400-\mathrm{V}$. In this case, the voltage stress on switches can exceed $800-\mathrm{V}$ with about half duty cycle, resulting usage of low performance and high cost switches. Especially, heavy burden is on the main switch which requires large load current capability and has narrow ZVS range. By selecting a small operating duty cycle, $\mathrm{V}_{\mathrm{Cc}}\left(=\mathrm{DV}_{\mathrm{S}} /(1-\mathrm{D})\right)$ can be reduced, resulting low voltage stress on switches. On the other hand, the current stress on the main switch $\mathrm{Q}_{\mathrm{M}}$ and the voltage stress on $\mathrm{D}_{\mathrm{S} 2}$ are considerably increased, contrary to the switch voltage stress to handle the same rated power. Moreover, the output filter size is also increased as the duty cycle is reduced. Consequently, it is hard to achieve low voltage stress on switch without side effects.

To relieve the above-mentioned limitations, a new three-switch ACF (TS-ACF) converter, which can have reduced voltage stress on switches with an optimal duty cycle, is proposed in this paper as shown in Fig. 2. The main switch is spilt into two i.e., $\mathrm{Q}_{\mathrm{M} 1}$ and $\mathrm{Q}_{\mathrm{M} 2}$, and the ACC is repositioned, to distribute the voltage stress on switches. The clamp diode $\mathrm{D}_{\mathrm{C}}$ limits the voltage stress on $\mathrm{Q}_{\mathrm{M} 2}$ by $\mathrm{V}_{\mathrm{S}}$ and provides the conducting path of transformer magnetizing current $\mathrm{I}_{\mathrm{Lm}}$ during the transformer reset operation. Since $\mathrm{V}_{\mathrm{S}}$ contribute to the transformer reset to add to $\mathrm{V}_{\mathrm{Cc}}$, only a small value of $\mathrm{V}_{\mathrm{Cc}}$ is required for the transformer reset. As a result,


Fig. 1 Conventional ACF converter. (a) Circuit diagram. (b) Key waveforms.
the voltage stress on $\mathrm{Q}_{\mathrm{M} 1}$ and $\mathrm{Q}_{\mathrm{A}}$, i.e., $\mathrm{V}_{\mathrm{S}}+\mathrm{V}_{\mathrm{Cc}}$, is much less than those of conventional ACF converter accordingly. Thereby, utilizing low-voltage rated switches, i.e., high performance and low cost switches, the proposed converter can be adopted for high input voltage applications with high efficiency and low cost. It is noted that TS-ACF converter costs only additional one clamping diode $\mathrm{D}_{\mathrm{C}}$ for distributing voltage stress among three switches. Moreover, $\mathrm{Q}_{\mathrm{A}}$ in the repositioned ACC does not require a floating gate driver, though $\mathrm{Q}_{\mathrm{M} 1}$ should be floated. In addition, ZVS of $\mathrm{Q}_{\mathrm{M} 2}$ can be always achieved regardless of load condition as well as $\mathrm{Q}_{\mathrm{A}}$.

## 2. Operational Principle

### 2.1. Mode Analysis

The key waveforms and topological states of TS-ACF converter are presented in Figs. 2(b) and 3, respectively. The basic operation is similar to that of ACF converter except for the transformer reset period. The operation of one switching period is subdivided into ten modes as follows.


Fig. 2 TS-ACF converter. (a) Circuit diagram. (b) Key waveforms.

Mode $1\left[\mathbf{t}_{0} \sim \mathrm{t}_{\mathbf{1}}\right]$ : Both $\mathrm{Q}_{\mathrm{M} 1}$ and $\mathrm{Q}_{\mathrm{M} 2}$ conduct, and $\mathrm{V}_{\mathrm{S}}$ is applied to the transformer primary side $\mathrm{V}_{\text {pri }} \mathrm{I}_{\mathrm{Lm}}$ is increased linearly and the power is transferred to the output.
Mode $2\left[t_{1} \sim t_{2}\right]$ : Both $\mathrm{Q}_{\mathrm{M} 1}$ and $\mathrm{Q}_{\mathrm{M} 2}$ are turned off at $\mathrm{t}_{1}$. The reflected output inductor current $\mathrm{I}_{\mathrm{Lo}} / \mathrm{n}$ and $\mathrm{I}_{\mathrm{Lm}}$ charges output capacitance of switches $\mathrm{C}_{\mathrm{M} 1}$ and $\mathrm{C}_{\mathrm{M} 2}$, while discharging $\mathrm{C}_{\mathrm{A}}$. Therefore, $\mathrm{V}_{\text {pri }}$ is decreased linearly.
Mode $3\left[\mathbf{t}_{2} \sim \mathbf{t}_{3}\right]$ : $\mathrm{V}_{\text {pri }}$ reaches zero at $\mathrm{t}_{2}$, then the transformer leakage inductor $\mathrm{L}_{\mathrm{lkg}}$ resonates with $\mathrm{C}_{\mathrm{M} 1}, \mathrm{C}_{\mathrm{M} 2}$, and $\mathrm{C}_{\mathrm{A}} \cdot \mathrm{V}_{\mathrm{QM} 2}$ reaches $\mathrm{V}_{\mathrm{S}}$ and $\mathrm{D}_{\mathrm{C}}$ is conducted. The commutation between secondary diodes $\mathrm{D}_{\mathrm{S} 1}$ and $\mathrm{D}_{\mathrm{S} 2}$ begins.

Mode $4\left[\mathrm{t}_{3} \sim \mathrm{t}_{4}\right]$ : $\mathrm{V}_{\mathrm{QA}}$ reaches $\mathrm{V}_{\mathrm{S}}+\mathrm{V}_{\mathrm{Cc}}$ and $\mathrm{V}_{\mathrm{QM1}}$ reaches zero at $\mathrm{t}_{3}$. $\mathrm{I}_{\mathrm{kg}}$ flows through $\mathrm{d}_{\mathrm{A}}$. To achieve ZVS, $\mathrm{Q}_{\mathrm{A}}$ should be turned on while $\mathrm{d}_{\mathrm{A}}$ conducts. $\mathrm{V}_{\mathrm{S}}+\mathrm{V}_{\mathrm{Cc}}$ is applied to $\mathrm{L}_{\mathrm{kg}}$, thus $\mathrm{I}_{\mathrm{lkg}}$ decreases linearly and the commutation is accelerated.
Mode $5\left[t_{4} \sim t_{5}\right]: I_{\text {Ds } 1}$ reaches zero at $t_{4}$ and the commutation is finished. $\mathrm{I}_{\mathrm{Lm}}$ flows to the input side through $\mathrm{d}_{\mathrm{A}}, \mathrm{C}_{\mathrm{C}}$, and $\mathrm{D}_{\mathrm{C}}$. Therefore, $\mathrm{V}_{\mathrm{S}}$ as well as $\mathrm{V}_{\mathrm{Cc}}$ contributes to the reset operation. That is, $\mathrm{V}_{\mathrm{S}}+\mathrm{V}_{\mathrm{Cc}}$ is applied to $\mathrm{L}_{\mathrm{M}}$, which result in small value of $\mathrm{V}_{\mathrm{Cc}}$ for the transformer reset.
Mode $6\left[\mathrm{t}_{5} \sim \mathrm{t}_{6}\right]: \mathrm{I}_{\mathrm{Lm}}$ reaches zero at $\mathrm{t}_{5}$. $\mathrm{L}_{\mathrm{M}}$ resonates with $\mathrm{C}_{\mathrm{M} 2}$, therefore $\mathrm{V}_{\mathrm{QM} 2}$ is decreased.
Mode $7\left[\mathrm{t}_{6} \sim \mathrm{t}_{7}\right]: \mathrm{V}_{\mathrm{QM} 2}$ reaches zero at $\mathrm{t}_{6}$ and $\mathrm{d}_{\mathrm{M} 1}$ is conducted. $\mathrm{I}_{\mathrm{Lm}}$ flows through $\mathrm{C}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{A}}$, and $\mathrm{d}_{\mathrm{M} 1}$. To achieve $\mathrm{ZVS}, \mathrm{Q}_{\mathrm{M} 2}$ should be turned on while $\mathrm{d}_{\mathrm{M} 2}$ conducts. $\mathrm{V}_{\mathrm{Cc}}$ is applied to $\mathrm{L}_{\mathrm{M}}$ and $\mathrm{I}_{\mathrm{Lm}}$ is


Fig. 3 Key topological states of TS-ACF converter. (a) Mode 1. (b) Mode 5. (c) Mode 7.


Fig. 4 Simplified waveform
decreased slowly than before.
Mode $8\left[\mathrm{t}_{7} \sim \mathrm{t}_{8}\right]$ : $\mathrm{Q}_{\mathrm{A}}$ is turned off at $\mathrm{t}_{7} . \mathrm{I}_{\mathrm{Lm}}$ charges $\mathrm{C}_{\mathrm{A}}$ while discharging $\mathrm{C}_{\mathrm{M} 1}$. Thus, $\mathrm{V}_{\text {pri }}$ is increased linearly.
Mode $9\left[\mathrm{t}_{8} \sim \mathrm{t}_{9}\right]: \mathrm{V}_{\text {pri }}$ reaches zero at $\mathrm{t}_{8}$ and $\mathrm{L}_{\mathrm{lkg}}$ resonates with $\mathrm{C}_{\mathrm{A}}$ and $\mathrm{C}_{\mathrm{M} 1}$. The commutation between secondary diodes begins.
Mode $10\left[\mathrm{t}_{9} \sim \mathrm{t}_{10}\right]$ : Both $\mathrm{Q}_{\mathrm{M} 1}$ and $\mathrm{Q}_{\mathrm{M} 2}$ are turned on at $\mathrm{t}_{9} . \mathrm{V}_{\mathrm{S}}$ is applied to $\mathrm{L}_{\mathrm{kkg}}$ and $\mathrm{I}_{\mathrm{lkg}}$ increases linearly. $\mathrm{I}_{\mathrm{Ds} 2}$ is decreased to zero and the commutation is finished at $\mathrm{t}_{10}$.

### 2.2. Steady-State Equations

For the analytic purpose, the simplified waveform shown in Fig. 4, which ignores the transition period, is used. Utilizing the volt.sec. balance of $\mathrm{L}_{\mathrm{M}}$ and cur.-sec. balance of $\mathrm{C}_{\mathrm{C}}$, the steady state equations are obtained as (1)-(3). It is noted that $\mathrm{V}_{\mathrm{Cc}}$ of TS-ACF converter presented in (1) is much less than that of ACF converter, i.e., $\mathrm{DV}_{\mathrm{S}} /(1-\mathrm{D})$, by the help of $\mathrm{V}_{\mathrm{S}}$ in the transformer reset operation as expected. Moreover, if the resonant period between $\mathrm{L}_{\mathrm{M}}$ and $\mathrm{C}_{\mathrm{M} 2}$, i.e., $\mathrm{t}_{5} \sim \mathrm{t}_{6}$, is considered, $\mathrm{V}_{\mathrm{Cc}}$ would be reduced further than (1).

$$
\begin{equation*}
V_{C c}=\left[\frac{\sqrt{1+4 D^{2} /(1-D)^{2}}-1}{2}\right] V_{S} \tag{1}
\end{equation*}
$$



Fig. 5 Experimental waveforms at full load condition. (a) $\mathrm{V}_{\mathrm{S}}=385-$ Vdc. (b) $\mathrm{V}_{\mathrm{S}}=300-\mathrm{Vdc}$.

$$
\begin{align*}
& D_{1}=D-\frac{(1-D)}{2}\left[\frac{\sqrt{1+4 D^{2} /(1-D)^{2}}-1}{2}\right]  \tag{2}\\
& D_{2}=1-D-D_{1} \tag{3}
\end{align*}
$$

### 2.3. ZVS operation

In ACF converter, although the ZVS of auxiliary switch is always achieved by $\mathrm{I}_{\mathrm{Lm}}$, the ZVS range of main switch is narrow because $\mathrm{L}_{\mathrm{lkg}}$ 's energy for ZVS is insufficient. On the other hand, it is remarkable that the ZVS of $\mathrm{Q}_{\mathrm{M} 2}$ in TS-ACF converter can be always achieved by the resonant between $\mathrm{L}_{\mathrm{M}}$ and $\mathrm{C}_{\mathrm{M} 2}$ during the transformer reset operation as in $\mathrm{t}_{5} \sim \mathrm{t}_{6}$ naturally. However, the ZVS range of $\mathrm{Q}_{\mathrm{M} 1}$ is still narrow similar to conventional one.

## 3. Experimental Results

To verify the validity of the TS-ACF converter, a 300-W converter prototype with $300 \sim 390-V d c$ input and $48-V d c$ output operating at 100 kHz has been built. To employ same voltage rating main switches, the nominal duty cycle at the maximum input voltage $390-\mathrm{Vdc}$ is selected at about 0.4 . The prototype of the TSACF converter has the following parameters: transformer: PQ3230, transformer turn ratio $\mathrm{n}=38 / 13$, transformer magnetizing inductance $\mathrm{L}_{\mathrm{M}}=2.1 \mathrm{mH}$, transformer leakage inductance $\mathrm{L}_{\mathrm{lkg}}=9.3 \mathrm{uH}$, main switches $\mathrm{Q}_{\mathrm{M} 1}$ and $\mathrm{Q}_{\mathrm{M} 2}$ : SPP11N60, an auxiliary switch $\mathrm{Q}_{\mathrm{A}}$ : FQP6N60, clamping diode $\mathrm{D}_{\mathrm{C}}$ : RHRP1560, secondary


Fig. 6. Measured efficiency
diodes $\mathrm{D}_{\mathrm{S} 1}$ and $\mathrm{D}_{\mathrm{S} 2}$ : MUR2020, output inductance $\mathrm{L}_{0}=150 \mathrm{uH}$.
Fig. 5(a) shows the key experimental waveforms of TS-ACF converter with $385-\mathrm{Vdc}$ input voltage at full load condition (300$\mathrm{W})$. $\mathrm{V}_{\mathrm{QM} 1}$ and $\mathrm{V}_{\mathrm{QA}}$ are limited to $\mathrm{V}_{\mathrm{S}}+\mathrm{V}_{\mathrm{Cc}}$, which are slightly higher than $400-\mathrm{Vdc}$ since $\mathrm{V}_{\mathrm{Cc}}$ is small as expected. $\mathrm{V}_{\mathrm{QM} 2}$ is limited by $\mathrm{V}_{\mathrm{S}}$ and is decreased to zero during the transformer reset operation allowing ZVS of $\mathrm{Q}_{\mathrm{M} 2}$. Fig. 5(b) shows the case of 300Vdc input voltage, where $\mathrm{V}_{\mathrm{QM} 1}$ and $\mathrm{V}_{\mathrm{QA}}$ also ensure low voltage stress.

Fig. 6 shows the measured efficiency of TS-ACF converter. Since the proposed converter adopts low-voltage rating switches which has a small drain-source resistance, its primary conduction loss can be reduced. Moreover, ZVS of $\mathrm{Q}_{\mathrm{A}}$ and $\mathrm{Q}_{\mathrm{M} 2}$ reduces the switching loss, though $\mathrm{Q}_{\mathrm{M} 1}$ still suffers from hard switching as conventional one.

## 4. Conclusions

A conventional ACF converter, a favorable topology in low-tomedium power applications, suffers from high voltage stress on switches. Therefore, it is not suitable for high input voltage applications such as a front-end converter of which the input voltage is about $400-\mathrm{V}_{\mathrm{dc}}$. Although relatively low voltage stress can be achieved using small duty cycle, the current stress would be considerably increased and causing other side effects.

To relieve these problems, TS-ACF converter, which employs two main switches and the repositioned ACC with one additional clamping diode, is proposed in this paper. The voltage stresses of all switches are considerably reduced compared with those of ACF converter. Therefore, the TS-ACF converter can be operated by an optimal duty cycle with high-performance and low-voltage rated switches. Moreover, ZVS of lower side main switch can be always achieved regardless of load and line conditions as well as auxiliary switch. Consequently, the TS-ACF converter is promising for high input voltage applications with high efficiency and simple structure.

## Reference

[1] R. W. Erickson and D. Masksimovic, Fundamentals of Power electronics, $2^{\text {nd }}$ Ed., John Wiley, New York, USA, 1950, pp. 39-55
[2] F. D. Tan, "The forward converter: from the classic to the contemporary," in Proc. IEEE APEC, 2002, pp. 857-863.
[3] A. Acik and I. Cadirci, "Active clamped ZVS forward converter with soft-switched synchronous rectifier for high efficiency, low output voltage applications," in Proc. IEE Electr. Power Appl., vol. 150, no. 2, pp. 165-175, Mar., 2003.
[4] S. S. Lee, S. K. Han, and G. W. Moon, "Transient current build-up ZVS converter using control of synchronous switch," IEE Electronics Letters, vol. 41, no. 5. pp. 277-279, Mar., 2005.
[5] H. K. Ji and H. J. Kim, "Active clamp forward converter with MOSFET synchronous rectification," in Proc. IEEE PESC, 1994, pp. 895-901.

