

회수더스트 재활용 아스팔트 혼합물 성능 평가

Evaluation of Asphalt Mixtures Properties with Bag-house Fines

정규동* 황성도** 양성린*** 김영민**** 김일평*****
Jeong, Kyu-Dong Hwang, Sung-Do Kim, Yeong-Min Yang, Seong-Lin Kim, Il-Pyeong

1. 서 론

국토해양부에서는 '산업부산물 재활용 도로 포장 잠정지침'을 제정하였으며, 재활용 산업부산물 중에 회수더스트를 재활용하도록하고 있다. 회수더스트는 아스팔트 플랜트에서 아스팔트 혼합물을 생산중에 백하우스에서 모아진 더스트를 말한다. 회수더스트의 발생량은골재 생산 석산에서의 파쇄 방법 및 골재 암종에 따른 스크리닝스에 포함된 미립분의 양에 따라 아스팔트 플랜트 별로 차이가 있다.

아스콘공업협동조합연합회의 자료에 따르면 2004년도 아스팔트 혼합물 생산량은 3,160만톤이며, 국내의 아스팔트 플랜트에서 발생하는 회수더스트가 약 7~8kg/톤이 발생한다고 가정할 경우 연간 약 24만톤의 회수더스트가 발생한다. 따라서, 회수더스트의 적정한 활용이 필수적이지만 한국도로공사에서는 회수더스트가 균열발생의 위험성을 증대시키기 때문에 전혀 사용하지 않도록하고 있으며, 국도 포장에서는 경우에 따라 석회석분과 회수더스트를 7:3 또는

이에 따라 본 연구에서는 일반적인 채움재로 사용되는 석회석 채움재와 화강암 골재 및 편마암 골재로 생산중에 발생한 회수더스트를 일정 비율로 혼합하여 아스팔트 혼합물의 성능특성을 평가하였다.

2. 재료 및 방법

5:5의 비율로 사용하고 있는 것으로 조사되고 있다.

2.1 사용재료

회수더스트는 석회암 잔골재 및 이를 사용하여 아스팔트 플랜트에서 혼합물 생산과정에서 발생한 회수더스트 2종을 이용하였으며, 이와 함께 석회석 채움재를 사용하였다. 아스팔트는 국내에서 생산하는 AP-5를 사용하였다.

골재는 화강암 쇄석을 단립도로 체가름하여 총 9가지 골재를 사용하였다. 골재의 종류는 19mm, 13mm, 10mm, #4, #8, #16, #30, #50, #100 골재 이었다.

회수더스트의 회수더스트와 채움재의 입도는 〈표 1〉과 같다. 회수더스트S는 화강암 골재로 생산중에 발생한 회수더스트이며, 회수더스트Y는 편마암 골재로 생산중에 발생한 시료이다.

^{*} 정회원·한국건설기술연구원 도로시설연구실 연구원·공학박사수료·031-910-0183(E-mail:kdjeong@kict_re_kr)

^{**} 정회원·한국건설기술연구원 도로시설연구실 선임연구원·공학박사·031-910-0180(E-mail:sdhwang@kict.re.kr)

^{***} 정회원·한국건설기술연구원 도로시설연구실 연구원·공학석사·031-910-0148(E-mail:choozang@kict.re.kr)

^{****} 정회원·한국건설기술연구원 도로시설연구실 연구원·공학석사·031-910-0614(E-mail:siyang@kict.re.kr)

^{*****} 정회원·국토해양부 간선도로과 과장·02-2110-8718(E-mail:ipkim33@mltm.go.kr)

〈표 1〉회수더스트의 입도 시험 결과

구 분	통과중량백분율(%)							
	13mm	10mm	5mm	2.5mm	0.6mm	0.3mm	0.15mm	0.08mm
회수더스트S	100	100	100	100	99.2	73.2	59.4	31.5
회수더스트Y	100	100	100	100	100	94.8	80.2	29.9
석회석 채움재	100	100	100	100	100	99.0	94.6	86.6

2.2 실험방법

회수더스트의 함량비율에 따른 혼합물의 성능특성을 검토하기 위하여 석회석 채움재로 배합설계한 이후에 회수더스 트와 석회석 채움재의 비율을 변화시키며 성능시험을 수행하였다.

회수더스트와 석회석 채움재를0, 30, 50, 100%로 비율을 변화하여 공시체를 제작하였으며, 이를 이용하여 TSR 시험과 휠트랙킹 시험을 하였다. TSR 시험은 아스팔트 혼합물의 수분 취약성과 동결융해 저항성을 파악하기 위하여 AASHTO T 283에 따라 공시체를 55~80% 포화시킨 후 -18℃에서 16±1시간 정도 동결시키고, 24시간 동안 60℃의물에 수침처리하여 25℃ 수조에 수침한 후에 시험하였다. 그리고, 수침처리 전후의 공시체를 간접인장시험하여 간접인장비인 TSR값을 계산하였다.

휠트랙킹 시험은 KS F 2374 '역청 포장 혼합물의 휠트랙킹 시험 방법 '에 따랐으며, 60℃ 고온에서의 소성변형 저항성을 평가하기 위하여 시험하였다.

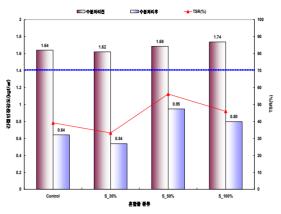
3. 결과 및 고찰

3.1 아스팔트 혼합물 배합설계 결과

회수더스트에 따른 성능을 평가하기 위하여 석회석 채움재를 이용하여 20mm 밀입도 아스팔트 혼합물로 배합설계를 하였다.

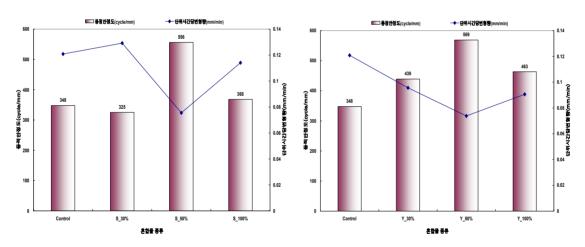
골재 9종 및 채움재를 사용하여 〈그림 1〉과 같은 혼합입도로 결정하였다. 마샬시험 결과 품질 기준을 만족하는 아스팔트 함량을 5%로 결정하였으며, 이 때의 마샬안정도는 1364kg, 흐름값은 27, 공극율은 3.98% 이었다.

3.2 수정 라트만 시험 결과


선회다짐기를 이용하여 공시체를 공극율 6%로 제작하였으며, 회수더스트S의 비율에 따른 간접인장강도 및 TSR 시험결과는 〈그림 2〉와 같았다.

간접인장강도는 회수더스트의 사용비율이 높을 수록 대체적인 경향이 높아졌으나 최대 차이가 약 6%로 많은 차이는 없었다. TSR 값은 석회석분을 100% 사용한 공시체가 39.1%로 외국의 기준보다 낮았으며, 회수더스트를 석회석분의 50% 사용한 공시체(골재함량의 1.5%)가 가장 높았다. 그러나, 회수더스트를 100% 사용할 경우에도 석회석분을 100% 사용할 경우보다 TSR 값이 높았다.

따라서, 채움재 사용 비율에서 회수더스트를 30~100% 사용하여도 수분저항성이 크게 낮아지지 않으며, 오히려일부 비율에서는 높은 저항성을 보임을 알 수 있었다.



〈그림 1〉 아스팔트 혼합물 배합설계 입도

〈그림 2〉회수더스트를 사용한 아스팔트 혼합물의 TSR 시험 결과

3.3 휠트랙킹 시험 결과

휠트랙킹 시험 결과 〈그림 3〉, 〈그림 4〉에서 동적안정도는 석회석 채움재를 100% 사용할 경우에는 348cycle/min 이었으며, 간접인장강도 시험결과와 동일한 유형으로 회수더스트 2종 모두 회수더스트를 석회석 채움재와 50% 사용한 공시체에서 높은 결과를 나타내었다. 화강암 회수더스트를 50% 사용할 경우에는 556cycle/min, 편마암 회수더스트를 50% 사용할 경우에는 569cycle/min 로 약 1.6배 정도 높은 동적안정도를 얻었다. 그리고 단위시간당 변형량은 더스트를 50% 또는 100% 사용할 경우 낮은 값을 나타내었다.

〈그림 3〉화강암 회수더스트를 사용한 휠트랙킹 시험 결과 〈그림 4〉편마암 회수더스트를 사용한 휠트랙킹 시험 결과

따라서, 아스팔트 혼합물에 석회석 채움재만을 사용하는 것이 소성변형 저항성에 유리하지 않음을 알 수 있었다. 특히, 화강암 회수더스트 및 편마암 회수더스트의 시험 결과에 따르면, 50%까지는 성능특성이 약간 저하되거나 최대 1.6배 만큼 소성변형 저항특성이 증가하는 것으로 나타났다.

4. 결 론

석회석 채움재와 회수더스트를 일정 비율로 혼합하여 아스팔트 혼합물을 평가한 결과 다음과 같은 결론을 얻을 수 있었다.

- 1. 석회석 채움재에 회수더스트를 50% 혼합한 아스팔트 혼합물의 TSR 값이 약 48% 증가되었으며, 이에 따라 회수더스트는 아스팔트 혼합물의 수분취약성이나 동결융해 저항성에 좋지 않은 영향을 미치지 않는 것으로 사료된다.
- 2. 석회석 채움재와 편마암 또는 석회암 회수더스트를 혼합한 결과 석회석 채움재를 100% 사용한 경우보다 최대 1.6배 소성변형 저항성이 향상되었다.
- 3. 현재까지의 연구결과 회수더스트는 아스팔트 혼합물의 성능특성에 크게 악영향을 주지 않은 것으로 판단되며, 향후에는 더욱 다양한 회수더스트를 이용한 성능 특성 시험이 필요할 것으로 사료된다.

감사의 글

본 논문은 국토해양부에서 지원한 "한국형 포장설계법 개발과 포장성능 개선방안 연구" 의 일부 연구결과입니다.

226 2008 학술발표논문집