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1. INTRODUCTION

Wave effects must be taken carefully into
account for the design of coastal structures
such as breakwater, harbor, and moored-floater.
Normally a number of possible wave
conditions are examined in order to determine
the design criteria. The wave conditions can be
generated by a suitable mathematical model
with help of numerical methods, which must
be able to describe wave deformations
accurately in terms of shoaling, refraction,
diffraction and reflection of waves propagating
from deep water to shallow water.

Boussinesq models are well known as the
most accurate method for dealing with the
propagation of non-linear shallow water waves
near coastal regions. Boussinesq (1872) derived
the equation by eliminating the vertical
dependency and assumingO)=06)<1, where
u=kh, e=alh, ko’% and P are the ical
wave number, amplitude and the water “depth
in this order at a far upstream reference
location. For waves propagating in intermediate
or deep water, the modified Boussinesq
equations with improved dispersion
characteristics have been suggested. Madsen et
al (1992) included higher-order terms with
adjustable  coefficients in the standard
Boussinesq equation for even and variable
bottoms. Agnon et al. (1999) formulated
exactly the boundary conditions at the free
surface and the bottom in an approximate
solution of the Laplace equation, which is
expressed by truncated series expansions. As a
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result, this formulation gives an accurate
nonlinear dispersion relation up to kh=6

Above methods, however, do not provide an
accurate vertical distribution of the velocity
field. Madsen et al. (2002) suggested a new
type of non-linear wave equations retaining the
vertical velocity as an unknown. In this
method, the Laplace solution is expanded from
an arbitrary z-level rather than the still-water,
which is quite different from the conventional
Boussinesq equations. His fifth-order model can
describe highly non-linear waves accurately up
to k=25 from the viewpoint of dispersion
property, and up to ki=12 from the
viewpoint of vertical velocity profile. Based on
this approach, numerical simulations are carried
out for waters of slowly-varying bathymetry in
this work. Hereby numerical methods applicable
for shoaling, refraction and also irregular wave
propagation are rigorously implemented. The
results thus obtained for wave profile, vertical
structure of velocities and irregular wave
propagation are to be used as input data for
the motion analysis of floaters in shallow
waters.

2. BOUSSINESQ FORMULATION
It is assumed that the fluid is incompressible
and inviscid with a free surface. A Cartesian
coordinate system is introduced with x- and
y-axis located on the still-water plane. Z-axis
is pointed vertically upward. The kinematic and
dynamic free-surface conditions are
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7,-Ww+Vn-V=0 (1
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V +gVn+V—+—(1-Vn-V1)] =0,
, T8VT] VI 2 2( 7-Vi) )
where V=@+Wy 3)
Here i =<#,7> and w are the
horizontal and vertical velocities at the
free-surface, respectively. g denotes the

gravitational acceleration and V=(3/0x,0/dy)
the horizontal gradient operator. Accordingly,

the kinematic bottom condition is expressed by

w,+Vh-u, =0. 4)

The equations given in (1)-(3) represent a
fully non-linear time-stepping problem. The
vertical and horizontal velocities at an arbitrary
z-level are related with those at the reference
z-level by trigonometric functions, which satisfy
the Laplace equation in the interior fluid
domain. The accuracy of the trigonometric
funtionals is enhanced greatly by applying the
Padé expansions (Padé, 1892). Finally the
velocities are expressed by

Wy, z)=(1~aV +aV Qi (51
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In equations (5) and (6), the quantities @

and W are the so-called utility variables which
are introduced for the approximate solution of

the Laplace equation. It is known that an
optimal velocity distribution can be obtained
near £=-h/2 (Madsen et al, 2002). This
choice is kept also in this paper. With this
Boussinesq formulation, the velocity
components at the free-surface and the bottom
can be obtained by substituting Z=7 and
z=-h respectively. By inserting equations (5)
and (6) into the bottom boundary condition,
equation(4), we have a relation for the utility

velocities @ and W'.

4 1 - 1 1 s
(1-5}’2V2+5};V3)W +(}V*—9N+§5N)“ (8)

Wi (I V +e/ Vil ~Vh-(N=5,7V +55y' V)W =0,
where ¥ =(h+2),

Here, the coefficients of the bottom slope
terms are modified in order to satisfy the
linear shoaling gradient numerically. The
optimized coefficients are found to be
¢, =0357739, ¢, =0.00663819 5, =0.0753019
5=-6315210°  for kh<30 (Madsen et al,
2002). Combining V  in equation (3) and
the bottom boundary condition (8), the
following linear system is established.

4-nB, —nB, B+n4
B, A-nB, B,+nA
4)1 +}§rlx 4)2 +h;/1 R) ‘}5]13 _}Vz;
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Here, the subscripts x and Y denote the

partial differentiation with respect to each
variable. This system has a number of
operators which contain up to either

fourth-order or fifth-order mixed derivatives
related with equations (5) and (6). The utility
velocity components i’ and W can be solved
from equation (9) in terms of @ and 7. After
having solved the utility variables, the vertical
velocity at the free-surface, W, can be
computed from Boussinesq formulation (6), i.e.

W= AW -Bi’ -B,%", (10)

which is used to close the governing
equation. Finally the problem turns out to be a
time-stepping problem for the non-linear
free-surface boundary conditions, equations (1)
and (2).

3. MODEL VERIFICATION
3.1 Linear Wave Shoaling
The linear shoaling equation is defined by
(Madsen and Sorensen, 1992).

A __h
4 h (11

The shoaling gradient,&, can be derived by
using energy flux conservation combined with
Stokes linear theory,

- 205 -



o = G(1+0.5G(1 ~cosh 2kh))

: 1+G)’
G= '2kh
sinh 2&4 -

12
where

To exemplify the present method, the
following test case is considered herein. At the
scaward boundary, the water depth is 13m.
The bottom is flat for the first 10m from the
seaward boundary, while it has a constant
slope of 1/50 from 10m to 600m from the
boundary. From 600m to 650m, the bottom is
flat again with a water depth of 1.2m. All
non-linear terms are switched off in this
particular simulation, the grid size and time
step are chosen to be 1.0m and 0.08s,
respectively.

The computed surface elevation is shown in
Fig.1, while Fig2 shows the comparison
between the computed maximum elevation and
the shoaling curve obtained from equation (12)
with the exact shoaling gradient (11). The
agreement is quite well over all locations.
Based on this simulation, it is concluded that
the accuracy of the present numerical model is
acceptable for mild wave shoaling.

3.2 Nonlinear Wave Shealing

Whalin’s experiment {1971) is often cited in
literature to validate numerical wave models
involving both the refraction and the shoaling.
The topography is given by equation (13) and
shown in Fig.3, ie. the shoaling region looks
like a concave lens.

04572 if 0<x<10.67-G
Hx,y) =404572 +2ls(10.67—G—x) if 1067-G<x< 18.29—G(1 3)
0.1524 otherwise

G(y)=y(6.096~y) |

The gradient of 4 is calculated analytically
when building the bottom boundary condition
(4). Because the bathymetry is symmetrical
about centerline ¥ =3.048m_ oply the half of
the domain is considered. For waves of T=ls,
it corresponds to kh=1913 and ka=0.0816,
The mesh with 40 nodes per wave length is
used and the time step is fixed to be
At=T/40. Almost identical results for the 1%
order harmonic are obtained as shown in Fig.4.
These are the relative amplitudes of harmonics

, where

along the center line at y=308m,
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Fig. 1. Calculated Free-surface Elevation
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Fig. 2. Comparison of Calculated Maximum

Elevation with Exact Linear Solution

Comparisons between the numerical and
experimental results are quite good. The
numerical reflection is not observed even for
second harmonics because we use 40 nodes for
the primary wave, which correspond to 20
nodes for the second harmonic waves. The
wave focusing can be seen in Fig.5, which
implies the capability of the Boussinesq
formulation and the present method.

3.3 Imegular Wave Simulation

Irregular waves in a water of constant depth
are simulated to investigate the generation and
absorption characteristics of irregular waves in
shallow water., It is to note that the peak
frequency of the simulated wave spectrum is in
the shallow water region (k<1.0). The
irregular waves are imposed at the inlet
boundary using JONSWAP spectrum which has
the peak period of 12s and the sigmficant
wave height of 3m. Fig. 6 shows the generated
wave spectrum. Two spectra match each other
quite well with relative error less than 1% in
the sense of the total energy. Based on this
result, it may be concluded that there is not
significant numerical dissipation in the interior
domain and the absorption layer works well
for waves of practically all frequencies.

5. CONCLUSION
A high-order Boussinesq equation based on
the Padé expansion is modeled to simulate the
fully non-linear and highly dispersive waves.
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Fig. 3. Bottom Topology for Nonlinear Wave
Shoaling
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Fig. 4. Computed and Measured Harmonic

Amplitudes for Whalin’s Experiment
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Fig. 5. Snap Shot of Simulated Nonlinear Surface
Elevation
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Fig. 6. Comparison Between Input Wave Spectrum
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and Generated Wave Spectrum

The formulation is
velocity field in terms of finite series
expansions of velocity components at an
arbitrary z-level. This method makes possible
to extend the applicability of the Boussinesq
equations to the deeper water region and it
turns out for the dispersion relation to be
accurate as high as Kkh=25while for the

expressed by the

vertical structure of the velocity field as high
as kh=12,

The present numerical result compares quite
well with the corresponding experiment (or
exact solution) for several cases considered
herein. The simulation of linear and nonlinear
shoaling  shows the accurate  shoaling
characteristics. The simulation for the irregular
waves in shallow water regions shows good
correspondence of the total energy between the
input and generated wave spectrum.
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