
P2P 환경하에서 VOD 시스템을 한
시간 기반 캐싱 기법

계이기, 최황규
*

강원 학교 컴퓨터정보통신공학과

e-mail: gigi_1368@hotmail, hkchoi@kangwon.ac.kr

Time Based Caching Scheme for Video on Demand
in P2P Environment

Yi-Qi Gui, Hwang-Kyu Choi*

Dept. of Computer Science and Engineering, Kangwon National University

요 약

본 논문은 P2P 네트워크 환경에서 규모 VOD 시스템을 한 새로운 시간 기반 캐싱 기법을 제안한
다. 제안된 캐싱 기법은 각 피어들이 요구 시작 시간을 기 으로 비디오의 서로 다른 부분을 분산
장 리함으로써 피어의 장 용량을 최소화하고, 피어간 데이터 요구에 한 캐시 률을 향상시켜
서버의 부하를 최소화 한다. 한 요구 시간을 기 으로 인 한 피어들을 하나의 클러스터로 그룹핑하
여 피어의 탐색 법 를 최소화하고, 이에 따른 네트워크 트래픽을 최소화 한다. 시뮬 이션을 통한 성
능 평가에서 피어의 참여와 탈퇴 가에 따른 서버 부하의 증가가 기존의 P2VOD와 비교하여 크게 감
소함을 보인다.

1. Introduction
 As with the large adoption of high speed Internet, video
on demand (VoD) is increasingly much more popular on the
Internet, which gives Internet users greater choice and more
control than live streaming or file downloading. Streaming a
video to remote peer takes a significant amount of
communication bandwidth, which is much more than
traditional text based messaging. In the traditional
client/server solutions, every demand is handled by a
centralized server, requiring a powerful server and large
bandwidth. Due to the server or network I/O bottleneck, the
traditional solutions can only serve very limited number of
concurrent demands.

 Peer to peer (P2P) solves the bottleneck on the server
under the centralized client/server architecture. The advantage
of P2P is to share resources between peers and to utilize all
the available resources on the Internet, where peers benefit
from one other. Another advantage of P2P is low cost. P2P
is an application-layer solution, which does not need upgrade
to an existing network. It utilizes there sources of peers,
which greatly reduces there requirements on the capability of
a server. Recently P2P technologies[1,3] are being used for
file sharing and application-level multicast (ALM) and more.
For video distribution over today’s Internet, where the
deployment of IP multicast has been slow and especially the
receiving ends are in vastly different network domain, while
P2P video sharing is to allow hosts to share their videos
directly. In a P2P video system, a host can be served by
any other host that has the video it requests. Later this host
can supply the video data it caches, if any, to serve future
requests. This service model is different from ALM in taking

* 교신 자

advantage of peer computing resources. In ALM, a peer
forwards an on-going video stream to serve other peers.
Besides the high bandwidth requirement, the peer can only
contribute during the time when it is downloading a video
itself. After playing back a video, the client does not help
further in distributing this video.

 In contrast, P2P video services amplify the serving
capacity of a video server by caching its videos on its
peers. When a peer downloads a video from a server, the
peer can cache the video and serve the whole community,
just like the original server of this video. Thus, a peer does
not have to forward its incoming video stream, while
downloading it, in order to contribute in video services. The
strength of a P2P video system relies on the effective
aggregation of communication bandwidth and disk space
contributed by its participating hosts. Ideally, after a host
downloads and plays back a video, it caches the whole
video and becomes a supplier of this video. In reality,
however, very few hosts are willing to retain a complete
video and supply it back to the community. This is not just
because a video is usually very large in size, but also
because serving a video request takes a significant amount
of communication bandwidth, which seems to be the major
concern of most users. Apparently, a P2P video system
cannot simply rely on the few hosts that cache videos in
their whole to serve all video requests. Otherwise, it will
create the server bottleneck problem like in a central server
architecture. Although proxy caching solution[2,5] can deal
with the server side bottleneck, it is expensive and not very
scalable. To materialize the advantage of P2P computing, a
host should be allowed to participate in video services as
long as it caches some amount of video data, instead of a
whole video.

제30회 한국정보처리학회 추계학술발표대회 논문집 제15권 제2호 (2008. 11)

1367

Figure 1. clusters structure of TBC at time

 In this paper, we proposed a unstructured P2P VoD
streaming system to present a fully distributed video
management using a new time based caching scheme (TBC).
Each client in our system have a variable size buffer to
cache a different part of the video in its local buffer to
serve other clients who request the same video. The key
idea of our technique is the concept of cluster, which is
defined to be a group of hosts which together can supply a
complete video. Each cluster is created dynamically and
managed individually. The advantages of our technique are
twofold. First, a client requesting a video can locate a
complete set of video pieces from its nearest host that
caches some part of the video. Thus, the search scope is
dramatically reduced. Second, caching video data can be
coordinated at the cluster level causes very minimal
communication overhead because our scheme limits cluster's
size, ie the number of its member peers.

 The remainder of this paper is organized as follows. We
present the architecture and algorithms of TBC system in
Section 2. In Section 3, we present our simulation study.
Finally, we give our concluding remarks in Section 4.

2. Architecture of TBC

2.1 Preliminary
 In our system, video files are segmented on time rather
than space. In a traditional file downloading system such as
Bit-Torrent [4], files are segmented on space. Systems like
Bit-Torrent do not provide any coherent way for users to
interact with files during downloading. As long as
downloading takes some noticeable amount of time, a VoD
system must overlap user interaction and downloading. User
seeks are based on time. Videos are partitioned into chunks
of uniform time to make the file addressable on time. Each
client has a buffer, whose maximum size is worth of
to cache the content data to server other clients.

 The unit amount of the buffer storage at one time used
by a client X is denoted as . By caching in the same
cluster, each clients caches exclusively different portion of
the video stream. Any client receives the stream from other
clients as long as the parts of the stream in available in the
client cluster. The missing part of video streaming can be
received from other clusters or Server. If the join time of a
client X is , then X can storage the unit size from
to [+] at the first caching time. Clients are group
into a cluster when | - |<= . Clusters are also
numbered, starting from Clu1 as the oldest cluster to Clu(N)
as the youngest generation. To keep minimal communication
overhead in the cluster, the maximum number of clients can
be joined the cluster is denoted as GS. A cluster can be
closed, when the number of clients is increasing to GS or
long time gap (Threshold) no client joins the system.

 Figure 1 captures cluster structure of TBC at time .
Assuming that each request arrives at time

, respectively, 3 clusters were
be created, such as Clu1, Clu2 and Clu3 at time , ,

. Then, are participated into their
group as a member of the groups. Clu1 and Clu2 are Close
state and Clu3 is Open state. And Clu3 is youngest cluster

in the system now. ,and are tail of the Clusters. It
can join into The Clu3 if a new client wants to join the
system.

2.2 Data caching and Cluster
we formally introduce the cluster concept and our novel

caching algorithm in this section. In TBC, a cluster is
defined as a group of the clients who join the system in
closing time as | - |<= |. For example ,
=2min, Client X join the system at time 00:12:30
(hh/mm/ss), and client Y join the system in 00:13:50 , so X
and Y join the same Cluster, while the number of the
Cluster is small to GS.

Caching Schedule:
void Cache_Scheduler()
// update the list of cluster member
 if the cluster Clu(N) is open // the youngest cluster Clu(N)
 request Client I to catch video data in [, +]
 If (CN==GS)// check the number of client in the cluster
 set cluster Clu(N) be closed and
 gossip message with all the clients to check
 Cache_scheduling in Clu(N).
 △g= +
 end
 end
 else // the cluste Clu(N) is closed
 while(client I is Caching the data <= + +△g*K)
 // the last client I join in the cluslter
 for each clients in the Clu(N) client I: 1 to CN
 // client I in the Kth times cache streaming
 request client I cache video streaming data in
 [+△g*K, + +△g*K]
 end
 K++
 end
 end
 end
 Figure 2 illustrates how peers and of
cluster Clu(N-1) apply the caching algorithm. As an example
client at time , due to the caching schedule, can
cache a unit amount of buffer size video streaming data
in [hash(), +hash()]. join into the system at ,
he/she cannot join into Clu(N-1) because of | - | > .
Hence, the cluster Clu(N-1) will be closed at + . A
new cluster Clu(N) and a new video session are created at

, and is the first member of the cluster. For the
remaining of the paper, Two peers are called friends if they
are belong to the same cluster.

제30회 한국정보처리학회 추계학술발표대회 논문집 제15권 제2호 (2008. 11)

1368

Figure 3. basic architecture of our system.

Figure 2. caching strategy for peers in the same cluster.

2.3 Peer Management
 This section describes the how TBC works for peers
sharing in terms of peer management and chunk fetch. Our
TBC system is comprised of Web entry, a track
server(tracker), one or more source server(sources), and
peers. Figure 3 illustrates these components and their
interactions. In arrow1, the user on peer C contacts the web
portal to browse the catalog and select a video file. The
portal returns a video file ID to the peer, with arrow 2. To
form connections with others for sharing, a peer contacts the
tracker, sending the tracker a description of its state. The
tracker uses this information to construct a list of candidate
peers, returned in arrow 4. Chunks are fetched from peers or
sources. A fetch from source server is shown with arrows
7 and 8 and a fetch from peer D with arrows 5 and 6. And
A joined the Clu(N) with its friends (D ,E, F) and starts
its caching schedule(details in the section2.2).

 Each peer organizes peers it knows from the tracker or
gossip messages into four lists: members, neighbors and
partners for overlay network and friends for caching scheme
in the same cluster. All the partners are neighbors and all
neighbors are members. And all the friends are members. A
members is a peer with a known IP address, its join
time(JT) and cache map(cm), cluster number. The member
list is the most inclusive. It is updated when the peer
synchronizes with the tracker or receives gossip messages
from other peers. A friend is a member in a cluster Clu(N)
for caching chunks as its caching schedule for sharing them

with peers. For the friends, they are request to periodically
exchange control message with their friends in order to keep
the friends list up-to-date. we can choose to update the list
on-demand. That is the update is initiated either by a new
node joining the generation or by a node leaving the system
intentionally. A neighbor is a member that has been
promoted based on cm proximity. Neighbors persistent TCP
connections. A partner is a neighbor that has been promoted
based on play-cache proximity. Chunks are only shared
between partners. Partners share data and neighbors share
meta data.

 To limit the overhead of peer management, each peer
constrains the number of its members, neighbors, and
partners and friends. User operations can quickly change the
potential for sharing between peers. The local scheduler
needs fresh information to find chunks. To keep minimal the
overhead of finding chunks, we take account into the cluster
number as the first priority when partners are selected from
neighbors. For example, peer A and Peer F are the
Neighbors of Peer H, and Peer F and Peer H in the same
cluster Clu(N), but Peer in the Clu(N-1). So Peer H
chooses Peer F firstly. To keep the partner list relevant for
chunk sharing, every 30s the peer recalculates the content
proximities of its members, neighbors and partners, then
promotes or demotes based on this calculation. JT and cm
proximity promotes members to neighbors and neighbors to
partners.

2.4 New client admission
 The tracker has the list of peers of the youngest cluster

as Clu(N) for each video session. To keep the first sorts of
chunks(Ex:0~2min) can be cached in peer X in this cluster
till the last peer join into the Clu(N) and finish to cache its
part of video chunks, we assume that keep the maximum
number of the cluster as GS and keep each peer can storage
the chunk sizes are limited (<=2min) at one time. peers in
the same cluster can share the chunks only if they are
overlapped. Hence, peers can be into the same cluster if
their join time are so closed(as - |<=).

case1: if the youngest cluster closed, a new client X will
get information from the tracker and a new video session is
created, and X is the first number of the youngest cluster
Clu(N). At the same time, X updates the friends list and
gossip with other peers and the tracker. Then X contracts
the Clu(N-1)(or other clusters and source server) to fetch
chunks and start its caching schedule, meanwhile finds
neighbors to and make partners to structure overlay network.

case2: For the case where there is the youngest cluster
Clu(N) is open, a new Client X can get the information
from the tracker and join in the Clu(N). update the friends
list and gossip with other peers and the tracker. Then X
contracts the Clu(N) to find neighbors to fetch chunks and
start its caching schedule, meanwhile finds neighbors and
selects partners to structure overlay network.

3. Performance Evaluation
 We study the performance of our system using
GT-ITM[6] topology generator to greate the underlying

제30회 한국정보처리학회 추계학술발표대회 논문집 제15권 제2호 (2008. 11)

1369

network topology of 1000 peer nodes based on the
transit-stub model. The network consists of 3 transit
domains, each with 5 transit nodes and a transit node is
connected to 6 stub domains, each with 12 stub nodes. In
this set of experiments, peers can be located on any stub
nodes in the topology. We randomly choose 1000 stub nodes
as peer clients and place the source server that stores all of
media contents on a transit node. The bandwidth settings
between two transit nodes, a transit node and a stub node
are 100Mbps and 10Mbps, respectively, and the out-bound
bandwidths of stub nodes are heterogeneous. In addition, we
choose a movie with 60 KB/s streaming rate and 2 hours
content as our testing stream. Some other important
parameters are given in Table I. Both TBC and P2VoD
cache recently watched media data in local buffer to relay to
other peers, so they are similar with respect to buffer
management. We compare the performance of TBC and
P2VoD in terms of server stress and quality of streaming.
In our experiments, P2VoD uses Smallest Delay Selection as
its parent selection scheme. Additionally, the maximum
number of clients allowed in the first generation of each
session is 8 and the buffer window size is 600 seconds.

 TABLE I. Parameter List

Parameter Value and Description

 600 seconds, buffer window size

TTL 5, maximum hop number for gossip message

t 50 seconds, gossip period

g 50, number of member

h 30, number of near neighbor

n 10, number of partners

w 20. number of friends

 2min, checking period of partners in partner list

8min, checking period of members in member list

1) Server Stress
 Figure 4 shows the source server stress caused by TBC
and P2VoD with different numbers of nodes. The arrival rate
of client is 1 per second. Note that the server stress of TBC
remains at 6~7 streams when the number of nodes increases.
In contrast, for P2VoD, the server stress increases almost
linearly (from 8 to 23). This is mainly because that in
P2VoD, each peer receives data from only one parent; and
consequently, a peer's residual bandwidth will be wasted if it
cannot support one more child. When a newly arriving client
fails to find a peer capable of supporting a full stream, it
has to create a new session from the source server, even
though there may exist some peers whose aggregate
bandwidth is greater than that of a full stream.

2) Quality of Streaming
 We compare the reliability of TBC and P2VoD by
"shutting down” some peers. Initially we start 1000 peers
with an arrival rate of 2. After all peers have started and
played for a while, we randomly stop some joined peers at
a speed of 2 peers per minute, and then calculate the
average times lot missing rate (TMR) for the remained
peers. TMR is measured by the number of missed times lots
divided by the total number of timeslots. We repeat this
experiment ten times. Figure 5 presents the result of times
lot missing rate with different percentages of node failure.
We can see that TBC has a lower TMR than P2VoD for

the same percentage of node failure. That means TBC
achieves better reliability by using gossip protocol and
retrieving data packets from multiple partners.

0

5

10

15

20

25

200 400 600 800 1000
Numbe r o f P e e r s

Nu
mb

er
 o

f
St

re
am

s

P 2VoD

TBC

 Figure 4 Server Stress (TBC vs. P2VoD)

0

0 . 05

0 . 1

0 . 15

0 . 2

0 . 25

0 . 3

0 . 35

0 . 2 0 . 5 2 5 10
pe r c e n t a ge o f f a i l e d node s (%)

TM
R(

%)

P 2VoD

TBC

 Figure 5. Quality of streaming (TBC vs. P2VoD).

4. Conclusions
 In this paper, we have presented a new time_based
caching scheme for VoD streaming in our unstructured P2P
overlay network, called TBC. The key ideas in this paper
are introduction of cluster, by which a peer can caching any
part of video data dynamically, and our caching scheme.
Since a client can always contact its nearest caching for a
complete Video, the search scope of a video look up is
minimized. Since the cluster size is small, it incurs little
communication and computation overhead. The simulation
results show that our system is superior to previous scheme
in terms of server stress, and quality of streaming .

References
[1] D. Tran, K. Hua, and T. Do, “"Zigzag: An efficient peer-to-peer
scheme for media streaming”", In Proc. of IEEE INFOCOM’'03, San
Francisco, CA, April 2003.
[2] B. Wang et al., Optimal Proxy Cache Allocation for Efficient
Streaming Media Distribution, IEEE Infocom 2002,New York, USA.
[3] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H.Zhang, “"The
feasibility of supporting large-scale live streaming applications with
dynamic application endpoints”",In Proc. of ACM SIGCOMM’'04,
Portland, USA, Aug. 2004.
[4] B. Cohen. Incentives Build Robustness in BitTorrent. InP2PEcon,
June 2003.
[5] D.A. Tran, K.A. Hua, and S. Sheu, A New Caching Architecture
for Efficient Video Services on the Internet, IEEE The 2003
International Symposium on Applications and the Internet, Orlando,
Florida, 2003.
[6] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an

internetwork,” In Proceedings of IEEE INFOCOMM’'96, Mar.
1996

제30회 한국정보처리학회 추계학술발표대회 논문집 제15권 제2호 (2008. 11)

1370

