Music Composition Using Markov Chain and Hierarchical Clustering

마르코프 체인과 계층적 클러스터링 기법을 이용한 작곡 기법

  • Published : 2008.02.13

Abstract

In this paper, we propose a novel technique that generate a new song with given example songs. Our system use k-th order Markov chain of which each state represents notes in a measure. Because we have to consider very high-dimensional space if we use notes in a measure as a state of Markov chain directly, we exploit a hierarchical clustering technique for given example songs to use each cluster as a state. Each given examples can be represented as sequences of cluster ID, and we use them for training data of the Markov chain. The resulting Markov chain effectively gives new song similar to given examples.

본 논문에서는 주어진 예제 멜로디 데이터를 이용하여 효과적으로 새로운 곡을 작곡하는 시스템을 제안한다. 우리가 제안하는 기법은 k-차원 마르코프 체인을 이용하여 마디 단위의 음악 블록을 합성한다. 한마디 단위를 하나의 마르코프 체인의 상태로 취급할 경우 매우 많은 상태를 고려해야 하므로, 이를 계층적 클러스터링 기법을 통하여 학습이 용이한 정도로 상태를 줄인다. 예제 데이터의 각 음악 블록은 소속된 클러스터 번호의 시퀀스로 대체되어 학습 데이터로 사용된다. 학습된 마르코프 체인의 상태를 전이하면서 각 상태에 해당되는 클러스터의 음악 블록을 랜덤하게 선택하여 합성한다. 학습된 마르코프 체인은 효과적으로 예제 음악과 비슷하면서 새로운 곡을 생성할 수 있었다.

Keywords