칼라 히스토그램 정제를 이용한 특징벡터 기반 영상 검색 알고리즘
Image retrieval algorithm based on feature vector using color of histogram refinement
- 발행 : 2008.02.13
초록
내용기반 영상검색(CBIR)에서 보다 효율적이고 빠른 영상검색을 위하여 본 논문에서는 칼라 히스토그램 정제를 이용한 특정벡터 기반 영상검색 알고리즘을 제안한다. RGB 칼라 이미지에서 각각의 R, G, B를 분할하고 히스토그램을 추출하여 16개의 영역(bin)으로 균일하게 분할한 다음 R, G, B 각각의 히스토그램에서 영역의 픽셀값을 계산하여 비교, 분석하고 그중 최고값을 추출한다. 그리고 R, G, B 각각의 영역의 최고값들을 이용하여 칼라 정보를 인덱스화 한 후 그 특정값을 이용한 영상 검색 기술을 수행한다. 본 논문에서 제안한 알고리즘은 효과적인 특정 추출을 위하여 각각의 R, G, B에서 추출 된 특정값을 특정벡터 테이블로 구성하여 입력 영상과 데이터베이스 영상을 비교하고 매칭도와 순위를 구하여 기존의 히스토그램만을 이용한 알고리즘 보다 더 나은 검색 결과를 확인하였다.
This paper presents an image retrieval algorithm based on feature vector using color of histogram refinement for a faster and more efficient search in the process of content based image retrieval. First, we segment each of R, G, and B images from RGB color image and extract their respective histograms. Secondly, these histograms of individual R, G and B are divided into sixteen of bins each. Finally, we extract the maximum pixel values in each bins' histogram, which are calculated, compared and analyzed, Now, we can perform image retrieval technique using these maximum pixel value. Hence, the proposed algorithm of this paper effectively extracts features by comparing input and database images, making features from R, G and B into a feature vector table, and prove a batter searching performance than the current algorithm that uses histogram matching and ranks, only.