Face Tracking and Recognition on the arbitrary person using Nonliner Manifolds
비선형적 매니폴드를 이용한 임의 얼굴에 대한 얼굴 추적 및 인식
Abstract
Face tracking and recognition are difficult problems because the face is a non-rigid object. If the system tries to track or recognize the unknown face continuously, it can be more hard problems. In this paper, we propose the method to track and to recognize the face of the unknown person on video sequences using linear combination of nonlinear manifold models that is constructed in the system. The arbitrary input face has different similarities with different persons in system according to its shape or pose. Do we can approximate the new nonlinear manifold model for the input face by estimating the similarities with other faces statistically. The approximated model is updated at each frame for the input face. Our experimental results show that the proposed method is efficient to track and recognize for the arbitrary person.
사람의 얼굴은 강체(rigid object)가 아니기 때문에 얼굴을 추적하거나 인식하기는 쉽지 않다. 또한 시스템에 미리 학습되어 있지 않은 임의의 얼굴의 경우 지속적으로 얼굴의 변화를 추적하고 인식하기는 어렵다. 본 논문에서는 시스템에 저장되어 있는 얼굴들에 대해 비선형적 매니폴드 모델을 구축하고 각 모델을 선형적으로 결합함으로써 비디오 기반의 영상으로부터 시스템이 알지 못하는 임의의 얼굴에 대해 추적하고 인식하는 방법을 제안한다. 입력된 임의의 얼굴은 얼굴 포즈나 표정 혹은 주위 환경 등에 따라 시스템에 저장되어 있는 서로 다른 얼굴들과 서로 다른 유사성을 갖는다. 따라서 입력 얼굴과 시스템에 저장되어 있는 얼굴들과의 확률적인 접근을 통해 유사성을 추정할 수 있고 추정된 유사성을 이용하여 입력 얼굴에 대한 새로운 비선형적 매니폴드 모델을 구축한다. 또한 추정된 모델은 매 프레임마다 입력 얼굴에 따라 실시간으로 갱신된다. 본 논문에서 제안하는 방법은 실험 결과를 통하여 효율적으로 임의의 얼굴에 대해 추적하고 인식할 수 있음을 보인다.