Extraction of Keyphrase using modified Active Learning

수정된 Active Learning을 이용한 고정키어구 추출

  • 이현우 (국립창원대학교 컴퓨터공학과) ;
  • 은지현 (KT 미래기술연구소) ;
  • 장두성 (KT 미래기술연구소) ;
  • 차정원 (국립창원대학교 컴퓨터공학과)
  • Published : 2008.06.30

Abstract

본 연구에서는 Active Learning의 학습과정을 변형하여 학습노력을 줄이고 성능향상을 이루는 방법에 대해서 기술한다. Active Learning을 사용하는 이유는 학습 코퍼스의 량을 줄이면서도 우수한 성능을 얻기 위해서이다. 우리는 학습량을 줄이기 위해서 다양성과 대표성이 높은 학습 데이터를 추가한다. 높은 다양성을 얻기 위해서 기 학습된 코퍼스와 가장 관련이 없는 데이터를 추가하고 높은 대표성을 얻기 위해 예제 군집화를 통해 대표적인 예제를 추가할 수 있도록 하였다. 제안된 방법의 효용성을 검사하기 위해서 고정키어구 추출 문제에 적용하였다. 실험결과를 보면 지도학습을 이용한 실험결과보다 우수하였으며, 학습량을 83%정도 줄일 수 있었다.

Keywords