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1. Introduction
Currently an increasing number of urban and mountain tunnels with small or deep 

overburden are excavated according to the principle of the New Austrian Tunneling 

Method (NATM). Successful planning, excavation, lining installation and maintenance 

of NATM tunnel demands prediction, control and monitoring of tunnel behavior, face 

stability, surface settlement, gradient and ground displacement with high accuracy. 

Various analytical methods (Akutagawa et al., 2001, Swoboda, 1979, Sakurai and 

Akayuli, 1998) have studied for prediction accuracy and improvement of tunnel 

behavior, as FEM simulation and empirical method using function. However, no 

method is available for prediction tunnel behavior, since this indicates that more 

than one parameter influences the magnitude of tunnel behavior. Tunnel engineer 

have experienced complex geology, unpredictability in material behaviors, difficult 

match up of analytical values and field data. One can be understand the importance 

of effective sharing of knowledge and experience, as tunnel construction 

information. Of several possible methods of incorporating tunnel construction 

information for this prediction accuracy and improvement of tunnel behavior, this 

paper proposes the use of Artificial Neural Networks (Rumelhart et al., 1986, 1995, 

Toll, 1996) as a key technique. As this method requires firstly preparation of 

database that contains information to relate input parameters to output parameters, 
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a database is created by performing the acquirement of field data.  Artificial Neural 

Networks (ANN) model are then created studying the database and establishing 

selected relationships between input and output parameters. Once this preparation is 

made, a user only requires the input parameters relating output parameters to 

immediately perform ANN analysis for remaining construction sequence.

This paper discussed the prediction of tunnel displacement by the three categories 

due to excavation stage using ANN analysis with acquired field data. It firstly 

introduces a brief framework of an ANN approach concept on the application of field 

database. Secondly, the outline of studied tunnel site and ANN analysis then described 

in detail. Finally, it is shown the design and development process of ANN model for 

predicting tunnel displacement, and discussed by the result of ANN analysis.

2. Artificial Neural Network approach concept on Tunnel design/construction 
Numerical analysis or empirical method carried out for the validity the selected 

support system and tunnel geometry. However, it is difficult to understand that 

ground estimation over all tunnel section. For reason them, on construction, various 

measures and investigation carried out for the understanding of stress and 

displacement field, and ground estimation. Monitored parameters are the geology 

and geo-mechanical properties of the rocks, tunnel face observation recorded, the 

presence of underground water, surface settlement, subsurface displacement and the 

tunnel displacement so on. ANN analysis carried out for the tunnel displacement 

prediction of next excavation and un-constructed area with acquired tunnel 

information.  Fig. 1 shows a scheme of ANN model for prediction of tunnel 

behavior. ANN model (Rumelhart et al., 1986, Rumelhart et al., 1995, Toll, 1996) is 

used in non-linear interrelationship problem of pattern recognition or the mapping 

problem of cause factor and result ones. The neural network in the input layer 

receives tunnel geometric, ground condition, excavation method and support system, 

as input values. Tunnel behaviors are to be determined from output values. 

      

Data interpretation
•Parameter identification

•Predictive analysis

Construction
and

Monitoring

Design
Database

ANN model

Field investigation

Data interpretation
•Parameter identification

•Predictive analysis

Construction
and

Monitoring

Design
Database

ANN model

Field investigation

    

Data division

Field database

Data processing

Tunnel

behavior

Tunnel geometrics

Ground condition

Support   system

Excavation system

ANN model

Data division

Field database

Data processing

Tunnel

behavior

Tunnel geometrics

Ground condition

Support   system

Excavation system

ANN model

(a) Generally flow                (b) Process of ANN analysis
Fig. 1 ANN based tunnel design and construction



- 27 -

3. Outline of Artificial Neural Network model
ANN is a form of artificial intelligence that attempts to mimic the behavior of the 

human brain and nervous system. Back Propagation Neural Network (BPNN) is the 

most popularly used ANN and it is well suited for problem of classification, 

prediction, adaptation control, system identification, and so on (Rumelhart et al., 

1986; Rumelhart et al., 1995; Baheer, 2000). The BPNN always consists of at least 

three layers; input layer, hidden layer and output layer. Each layer consists of a 

number of elementary processing units, called neurons, and each neuron is 

connected to the next layer through weights, i.e. neurons in the input layer will 

send its output as input for neurons in the hidden layer and similar is the 

connection between hidden and output layer. All neurons in the BPNN are 

associated with a bias neuron and a transfer function, except for the input layer. 

The bias has a constant input of 1, while the transfer function filters the summed 

signals received from this neuron. The application of these transfer functions 

depends on the purpose of the neural network. The output layer produces the 

calculated output vectors corresponding to the solution. BPNN performs in two 

phases; learning (training) phase and testing (or validation) phase. During learning 

of the network, as in Fig. 2 (a), data is processed through the input layer to hidden 

layer, until it reaches the output layer, as is called forward process. In this layer, 

the output is compared to the targeted values (the "true" output). The difference or 

error between both is processed back through the network, as is called backward 

process, updating the individual weights of the connections and the biases of the 

individual neurons. The input and output data are mostly represented as vectors 

called training pairs. Each path through the entire training pattern is called a cycle 

or epoch. The process is then repeated as many epochs as needed until the error 

within the user specified goal is reached successfully. The process as mentioned 

above is repeated for all the training pairs in the dataset, until the network error 

converged to a threshold minimum defined by a corresponding sum square error 

function. A network could provide almost perfect answers to the set of problems 

with which it was trained, but fail to produce meaningful answers to other 

examples. Testing phase is a calculation process that is undertaken after training 

has been completed, as shown in Fig. 2 (b). Fig. 3 illustrates a typical two 

hidden-layer BPNN architecture used in this research. In order to perform a BPNN 

analysis, one needs to be aware of several parameters and operations associated 

with network training (Hagazy et al., 1994). They are database size and partitioning, 

data preprocessing, balancing, data normalization, input / output representation, 

network weight initialization, BPNN learning rate and momentum coefficient, transfer 

function, convergence criteria, number of training cycles, training modes, hidden 

layer size and parameter optimization so on (Baheer, 2000). Details of the BPNN 
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algorithm are beyond the xcope of this study and can be found in Hecht-Nielsen.
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Fig. 2. Learning and testing phase in neural network system
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Fig. 3. Scheme of Three-layered BPNN

4. Studied tunnel site
4.1 Tunnel construction characteristic

Acquirement of field data is performed by two tunnel of the TOHOKU 

SHINKANSEN Project in Japan. These tunnels are located at the northern end of 

the Honshu, between Hachinohe and Shin-Aomori. The longitudinal profile with 

geological conditions illustrated in Fig. 4 (a) tunnel A and (b) tunnel B. In Figure, it 

is know that NATM tunnel excavated through sandy layer under shallow depth and 

Auxiliary method is applied for face stabilization and water inflow control. The 

geological interpretation is based on the geological records of the tunnel excavation 

and the former geological investigations. The geological profile of the ground 

consisted of sandy layer. The standard tunnel cross section are given in Fig. 5. 

Supports reinforcements are rock bolt, shotcrete and steel support as show in Fig. 

5. The excavation was conducted by the top heading and three bench cut method. 
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4.2 Relationship of factors affecting tunnel behavior
Factors affecting tunnel behavior can be grouped into four major categories. 

These parameters shown in Fig. 6 are as input data to design ANN model for 

prediction the tunnel behavior. Geological and geometry of NATM tunnel used in 

ANN analysis are illustrated in Fig. 7.
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Face observation records, rock strength and their qualities such as joint spacing, 

weathering etc., are processed in a timely manner so as to grasp the present 

condition of tunnel, and to reflect the findings in subsequent predictions. The rating 

was calculated by equation (1). 

{ } { } { }
{ } { } { }
{ } { } { } 9/]3/100)1(3/100)1(3/100)1(

3/100)1(3/100)1(3/100)1(
3/100)1(3/100)1(3/100)1([100

×−+×−+×−+
×−+×−+×−+

×−+×−+×−−

IHG
FED

CBA

(1)

In equation (1), A, B, C, D, E, F, G, H and I are face condition, condition of 

unsupported excavation surface, compressive strength, weathering/alteration, 

crack/fissure frequency, crack/fissure conditions, mode of cracking/fissuring, water 

in flow and the deterioration due to water, respectively. And, J and K are the 

longitudinal and transverse direction of crack/fissure. Tunnel depth, geological 

conditions are considered. In case of tunnel diameter, the entire length of the 

TOHOKU SINKANSEN Project has a constant diameter of 10m, the effect of tunnel 

diameter is negligible. Geological condition is represented by the numeric value, as 

the rating of tunnel face record. Fig. 8 showed the relation of Tunnel depth, face 

rating, face condition and crown settlement. Tunnel face rating was calculated by 

equation (1).

Excavation and support condition are considered as the factors affecting tunnel 

behavior. Two types of excavation methods, which are its top heading and multiple 

bench cut methods, are consisted in this study. Support condition includes shotcret, 

rock bolt length and number, H-steel type. In addition, another support system 

affecting tunnel behavior is auxiliary method. forepoling and steel pipe forepiling 

are generally applied to prevent surface settlement and crown settlement. And, face 

shotcrete, face rock bolt, temporary invert and tunnel side bolt are used for the 

control of crown settlement and foot settlement. In general practice, tunnel support 

system with appropriate auxiliary method can considerably reduce the magnitude of 

tunnel deformation. Factor affecting tunnel behavior on the auxiliary method in this 

study are the technique (type) of auxiliary reinforcements, steel pipe forepiling 

specification as diameter, length, number, construction degree etc., and the exist of 

ground-water control method and tunnel face reinforcement.
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Table 1. Applied auxiliary method in A and B tunnel
Number of Auxiliary
method(see Fig.9.2) Used type(Diameter, Length, Construction degree)

1 Steel pipe forepiling(φ114.3, 12.5m, 1200)

2 Forepoling(D22, 3m, 900), Face bolt, Face shotcrete

3 Forepoling(φ48.6, 2m, 1500), Face bolt, Face shotcrete

4 Steel pipe forepiling(R32, 7m, 1200), Face bolt, Face shotcrete

1 Forepoling(D22, 3m, 900)

2 Steel pipe forepiling(φ76, 12m, 1500), Face bolt, Fore bolt

3 Steel pipe forepiling(φ76, 12.75m, 1200), Face bolt

4 Steel pipe forepiling(φ76, 12.75m, 1800), Face bolt, Face shotcrete

5 Steel pipe forepiling(φ76, 12.75m, 600), Face bolt,
Face shotcrete, Foot side pile

6 Steel pipe forepiling(φ76, 12.75m, 600)

Tunnel B

Tunnel A
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Fig. 9. Relation of Tunnel behavior and auxiliary method with tunnel depth

Table 1 shows the applied auxiliary method in tunnel A and B. Relation of tunnel 

behavior and auxiliary method is represented in Fig. 9. A relationship between the 

auxiliary reinforcement technique and tunnel behavior is shown in this figure. From 

Fig. 8 and 9, there are no strong trends in the relationship between each parameter 

and tunnel behavior. This indicates that more than one parameter influence the 

magnitude of tunnel behavior. This led to the use of ANN with the intent to relate 

several parameters to tunnel behavior.

5. Design and development of Artificial Neural Network model for 
tunnel behavior prediction

5.1 Outline of Artificial Neural Network model

The main focus of the ANN approach is to make the prediction model of tunnel 

behavior through existing data. The ANN maps input vectors onto output vectors. It 

can be trained to map given input vectors onto respective given output vectors 

referred to as desired output vector. The neural network in the input layer receives 

tunnel geometric, ground condition, excavation method and support system, as input 

values. Tunnel behaviors are to be determined from output values. In this paper, 

ANN analysis was performed in the three categories due to tunnel excavation, as 
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shown in Fig. 10. Applied ANN analyses are summarized as following. 

1) ANN analysis I ; Prediction of tunnel behavior using acquired data before 

construction (see Fig. 10 (a))

2) ANN analysis II ; Prediction of tunnel behavior using data acquired when the 

tunnel face arrives at monitored section (see Fig. 10 (b))

3) ANN analysis III ; Prediction of Tunnel behavior using data acquired when the 

tunnel face is 1D away from the monitored section (see Fig. 10 (c))

Monitored
section
Monitored
section

(a) ANN analysis I         (b) ANN analysis II    (c) ANN analysis III
Fig. 10. The proposed ANN analysis

5.2 Artificial Neural Network analysis

5.2.1 Section of input and output parameters
Model input parameters are tunnel overburden, ground condition, excavation 

method, support condition, auxiliary method. And, output parameters of model are 

tunnel behavior in final excavation, as shown in Table 2.  

Table 2. Input variables
Category Parameter items

Tunnel geometrics Overburden -
clay
sand

 alt. of strata
Unconsilidated

ground type -

Face estimation -
Longitudinal

direction
Transverse
direction

Excavation method Top Heading and
Three bench cut method -

Shotcret -
rock bolt(length) -

rock bolt(number) -
H-steel -

Forepoling -
 Steel pipe  forepiling -

diameter
Length
number

construction
degree

Face bolt -
Face shotcrete -
 Footing reinforcement bolt -

Crown -
Convergence -

Foot settlement -
Crown -

Convergence -
Foot settlement -

Face Crack/fissure
orientation

Ground type

Ground condition

Tunnel behavior
in final excavation

Initial tunnel
behavior

information

Support condition

Auxiliary method
Steel pipe forepiling

 specification
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Ground condition in the tunnel used for neural network input are divided into 

three categories: (1) ground type around tunnel face, (2) the existence of 

unconsolidated soil and (3) one face record rating of the total geological at the 

tunnel. Geology type around tunnel face is divided into clay, sandy and alt. of 

strata. The rating of geology characteristic at the tunnel face is calculated as 

according to the Japan standard specifications. The categories of 'excavation 

method' are divided into two categories: bench cut and three bench cut method. 

Support conditions are selected in four factors as length and number of rock bolt, 

shotcrete and Steel beam type. Auxiliary reinforcements were especially considered 

because NATM tunneling method was commonly used NATM construction in 

non-stability ground. Five auxiliary reinforcement techniques, forepoling, steel pipe 

forepiling, face bolt, face shotcrete and footing reinforcement, were major methods 

as a countermeasure of settlement due to tunneling in Japan. Details of input and 

output parameters of ANN analysis and various models are shown in Tables 3 and 

4. In ANN analysis I, input parameters are tunnel overburden, initially investigated 

ground condition, excavation method, support condition and auxiliary method, as 

design stage. In model I-1, support condition used as the input parameters in the 

logical variables, which applied to case 1 and did not apply to case 0 in ANN 

analysis. The input parameters of forepoling and steel pipe forepiling were used as 

one input variable, which was applied forepoling used as 0 and steel pipe forepiling 

used as 1. Input variables of steel pipe forepiling specification were not used in 

ANN analysis. In model I-2, the input parameters of forepoling and steel pipe 

forepiling were used as two input variable. In model I-3, steel pipe forepiling 

specifications were used as four variables in ANN analysis. In model I-4, support 

conditions were used as four input variable. Input parameters of ANN analysis 

model II included the face rating with ANN analysis model I ones, as tunnel face 

arrival stage. In ANN analysis model III, input parameters included the initial 

measure data with the ANN analysis model II.

Category Parameter items
ANN

model I-1
ANN

model I-2
ANN

model I-3
ANN

model I-4
Tunnel geometrics Overburden - Input Input Input Input

clay Input Input Input Input
sand Input Input Input Input

 alt. of strata Input Input Input Input
Unconsilidated

ground type
- Input Input Input Input

Excavation method
Top Heading and

Three bench cut method
- Input Input Input Input

Shotcret - Input
rock bolt(length) - Input

rock bolt(number) - Input
H-steel - Input

Forepoling - Input Input Input
 Steel pipe  forepiling - Input Input Input

diameter × × Input Input
Length × × Input Input
number × × Input Input

construction
degree

× × Input Input

Face bolt - Input Input
Face shotcrete - Input Input

Footing reinforcement bolt - Input Input Input Input
Crown - × × × ×

Convergence - × × × ×
Foot settlement - × × × ×

Crown - Output Output Output Output
Convergence - Output Output Output Output

Foot settlement - Output Output Output Output

Auxiliary method
Steel pipe forepiling

 specification

Tunnel behavior
in final excavation

Initial tunnel
behavior

information

Ground condition

Input

Ground type

InputSupport condition

Input

Input

Input

Input

Table 3. Description of input an output 
parameter in ANN model I

  

Category Parameter items
ANN

model II-1
ANN

model II-
ANN

model II-3
ANN

model II-4
ANN

model III-1
Tunnel geometrics Overburden - Input Input Input Input Input

clay Input Input Input Input Input
sand Input Input Input Input Input

 alt. of strata Input Input Input Input Input
Unconsilidated

ground type
- Input Input Input Input Input

Excavation method Top Heading and
Three bench cut method

- Input Input Input Input Input

Shotcret - Input
rock bolt(length) - Input

rock bolt(number) - Input
H-steel - Input

Forepoling - Input Input Input
 Steel pipe  forepiling - Input Input Input

diameter × × Input Input ×
Length × × Input Input ×
number × × Input Input ×

construction
degree × × Input Input ×

Face bolt - Input Input
Face shotcrete - Input Input

Footing reinforcement bolt - Input Input Input Input Input
Crown - × × × × Input

Convergence - × × × × Input
Foot settlement - × × × × Input

Crown - Output Output Output Output Output
Convergence - Output Output Output Output Output

Foot settlement - Output Output Output Output Output

Input

Input

Input

Input

Input

Input

Input

InputInput

Input Input

Ground type

Input

Ground condition

InputInputFace estimation -

Support condition

Auxiliary method
Steel pipe forepiling

 specification

Tunnel behavior
in final excavation

Initial tunnel
behavior

information

Table 4. Description of input an output 
parameter in ANN model II and III
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5.2.2 Field database and data-division
In this study, field data are obtained by two NATM tunnel in TOHOKU 

SHINKANSEN Project. It is a common practice to divide available data into two 

subsets; training set to construct a neural network model, and an independent 

testing set to estimate model performance in the deployed environment. Recent 

studies have found that the way of dividing the data can have a significant impact 

on the results (Takar and Johnson, 1999). ANN model is unable to extrapolate 

beyond the range of their training data. To develop the best possible model, which 

gave the available data, all patterns are contained in the data, which are needed to 

be included in the training set. Testing material properties were considered above 

comment, as the same population in training and testing data set.  Statistical value 

of used in learning and testing were shown in Table 5. In data number, 55% of the 

dataset (102case) was used for training and 45% of the dataset (83cases) was used 

for testing of the ANN model. The statistical parameters considered in this study 

are average (AVE.), standard deviation (STAN.), minimum (MIN), maximum (MAX) 

and variation (VAR.). There are still slight differences in the statistical parameters 

for the training and testing sets. However, as a whole, the two data sets may be 

considered to represent the same population in nature. 

Table 5. Statistical values of parameters
MAX MIN AVERAGE VAR STANDARDVAR MAX MIN AVERAGE VAR STANDARDVAR
45.21 2.00 22.94 168.41 12.98 44.23 2.50 22.93 151.36 12.30
1.00 0.00 0.04 0.04 0.20 1.00 0.00 0.02 0.02 0.15
1.00 0.00 0.47 0.25 0.50 1.00 0.00 0.46 0.25 0.50
1.00 0.00 0.49 0.25 0.50 1.00 0.00 0.52 0.25 0.50
1.00 0.00 0.51 0.25 0.50 1.00 0.00 0.49 0.25 0.50
1.00 0.00 0.27 0.20 0.45 1.00 0.00 0.25 0.19 0.44

20.00 20.00 20.00 0.00 0.00 20.00 20.00 20.00 0.00 0.00
3.00 3.00 3.00 0.00 0.00 3.00 3.00 3.00 0.00 0.00

16.00 10.00 12.94 9.09 3.01 16.00 10.00 13.04 9.11 3.02
3.00 3.00 3.00 0.00 0.00 3.00 3.00 3.00 0.00 0.00
1.00 0.00 0.81 0.15 0.39 1.00 0.00 0.84 0.13 0.37
1.00 0.00 0.48 0.25 0.50 1.00 0.00 0.43 0.25 0.50

diameter 114.30 0.00 37.31 1585.56 39.82 114.30 0.00 34.20 1597.81 39.97
Length 12.75 0.00 5.75 37.77 6.15 12.75 0.00 5.42 39.16 6.26
number 30.00 0.00 8.21 93.45 9.67 30.00 0.00 7.72 98.57 9.93

construction
degree 180.00 0.00 65.29 5621.20 74.97 180.00 0.00 60.36 5630.36 75.04

1.00 0.00 0.58 0.25 0.50 1.00 0.00 0.59 0.24 0.49
1.00 0.00 0.65 0.23 0.48 1.00 0.00 0.64 0.23 0.48
1.00 0.00 0.03 0.03 0.17 1.00 0.00 0.01 0.01 0.11

37.00 0.00 15.49 88.03 9.38 37.00 0.00 16.32 83.49 9.14

5.00 1.00 1.26 0.87 0.93 5.00 1.00 1.14 0.49 0.70

5.00 1.00 1.44 1.44 1.20 5.00 1.00 1.40 1.34 1.16

Crown 83.90 -3.10 14.75 227.23 15.07 70.50 -4.40 10.23 131.74 11.48
Convergence 10.70 -30.90 -4.05 31.36 5.60 9.50 -21.70 -4.07 28.18 5.31

Foot settlement 83.60 -7.20 12.56 203.43 14.26 61.60 -6.00 8.71 123.19 11.10
Crown 99.50 -4.60 21.75 406.32 20.16 90.90 -1.60 16.35 242.53 15.57

Convergence 5.30 -50.20 -8.23 84.44 9.19 3.00 -43.70 -8.54 81.34 9.02
Foot settlement 164.10 -4.00 20.67 579.55 24.07 112.20 -2.80 15.32 304.50 17.45

Steel beam
rock bolt(number)

Final tunnel
behavior

Face Crack/fissure
orientation(Transverse direction)
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Excavation method
Shotcret
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  Footing reinforcement  bolt
 face shotcrete

face bolt

Steel pipe
forepiling

 specification

 Steel pipe  forepiling
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sand
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5.2.3 Data pre-processing
After data division, it is important to pre-process the data to a suitable form 

before they are brought in to an ANN making procedure. Pre-processing the data, 

such as scaling, is important to ensure that all variables receive equal attention 

during training. The output variables have to be scaled to be commensurate with 

the limits of the transfer functions used in the output layer. Scaling the input 

variables is not necessary but is always recommended (Hassoum, 1993).

     

     
(2)

where Xnew is the normalized value ; X is original value ; Xmax is the maximum 

value of all data; and Xmin is the minimum of all data. The input and output 

variables are scaled between 0.1 and 0.9, as the sigmoid transfer function is used 

in the output layer.

5.2.4 Used Artificial Neural Network architectures and parameters
Despite its versatility, BPNN often faces shape criticism about the high 

computation for net work training and failure to guarantee its convergence 

(Suwansawat and Einstein, 2006). Generally, there is no direction and precise 

method for determining the most appropriate architecture and parameters for the 

selection of ANN model, although some guide lines are proposed (Hagazy et al., 

1994). Trial and error method is the only way to arrive at a suitable learning rate, 

momentum, number of training cycle and the optimal numbers of hidden node or 

hidden layer with the criterion error (Neaupane and Adhikari, 2006). Baheer (2000) 

and Hect-Neilsen (1987) indicated that one hidden layer may be sufficient for most 

problems. Lippmann (1987) and Rumelhart et al.(1986) indicated that there is rarely 

an advantage in using more than one hidden layer. Therefore, one hidden layer was 

preferred in this study. The determination of the number of hidden node is the 

most critical task in determining ANN structure. Kannellopoulas and Wilkinson 

(1997) proposed that it be 2 times the number of input nodes. In this study, the 

number of neurons in hidden layers varies from 1 to 2 times the number of input 

nodes. The initial weights are generally set as random small values. Rumelhart et 

al.(1986) and American Society of Civil Engineers (ASCE, 2000) proposed between 

-0.3 and 0.3. Looney (1987) recommend between -0.5 and 0.5. In this study, the 

initial weight range was selected as between -0.1 and 1.0. Learning rate was set 

0.01, 0.1, 0.2 and 0.3. The momentum has a stabilizing effect in the BPNN 

algorithm (Negnevitsky, 2002). Wyhthoff (1983) set the momentum between 0.4 and 

0.9 and Hassoun (1995) suggested that it should be 0.0 to 1.0. This study chose it 

to be 0.1, 0.3 and 0.5. For two section, ANN architectures and parameters are 
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shown in Table 6. The development process of ANN model I is shown in Fig. 11.

ANN analysis Input layer-hiddenl ayer-output layer Learning rate/Momentum Final Epoch

Model I-1
10-10-1, 10-12-1, 10-14-1,
10-16-1, 10-18-1, 10-20-1

Model I-2
11-11-1, 11-12-1, 11-14-1,

11-16-1, 11-18-1, 11-20-1, 11-22-1

Model I-3 16-16-1, 16-20-1, 16-24-1,
16-28-1, 16-32-1

Model I-4 19-19-1, 19-22-1, 19-26-1,
19-30-1, 19-34-1, 19-38-1

Model II-1 11-11-1, 11-12-1, 11-14-1,
11-16-1, 11-18-1, 11-20-1, 11-22-1

Model II-2 12-12-1, 12-14-1, 12-16-1,
12-18-1, 12-20-1, 12-22-1, 12-24-1

Model II-3
17-17-1, 17-18-1, 17-22-1,
17-26-1, 17-30-1, 17-34-1

Model II-4
20-20-1, 20-24-1, 20-28-1,
20-32-1, 20-36-1, 20-40-1

Model III-1
12-12-1, 12-14-1, 12-16-1,

12-18-1, 12-20-1, 12-22-1, 12-24-1

0.01/0.1, 0.01/0.3, 0.01/0.5,
0.1/0.1, 0.1/0.3, 0.1/0.5,
0.2/0.1, 0.2/0.3, 0.2/0.5,
0.3/0.1, 0.3/0.3, 0.3/0.5

50000

Table 6. ANN architecture and parameters
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그림 11. ANN model I development process

5.2.5 Learning process and convergence criterion
Process of optimizing the connection weight and bias is known as training or 

learning process. The aim is to find a global solution to what is typically a highly 

non-linear optimization problem. ANN analysis most commonly used for finding 

optimum weights is BPNN algorithm (Basheer and Hajmeer, 2000). Back-propagation 

of errors is called an epoch. The iteration step corresponds to an epoch number. In 

this paper, the convergence criteria are set such that the learning process is 

terminated when either of the following two conditions ; 1) Number of training 

cycles (Epoch) becomes 400,000, and 2) Error of the network becomes less than 

0.0001. ANN analysis for learning process was performed an IBM-compatible 

Pentium 4 class machine (598MHz, 248MB RAM). Learning took about 6 hours for 

600 thousand cycle.

5.2.6 Testing process and model validation
Once the training of a model has been successfully accomplished, performance of 

the trained model is validated using the testing data, which have not been used as 

the part of model building process. Testing result is used for the selection of an 

optimal ANN model. Representative indices that are needed to evaluate the quality 

of testing results are the following 2 indices; the root mean square error (RMSE)) 

and coefficient of determination, R2. 
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where Xi is targeted value, Yi is predicted value and N is the number of 

input-output data pairs. And,   and   indicate average values of input, x, and 

output, y, respectively.  

5.3 Result of Artificial Neural Network analysis

Prediction of tunnel deformations was performed by ANN analysis with field 

database for two tunnels. In order to obtain better performance of the ANN model, 

the ANN architecture was tested with various numbers of nodes per hidden layer, 

various learning and momentum rates. After ANN analysis many trials, the summary 

of training and testing results are illustrated in Table 7, 8 and 9. The results 

shown in Table 7, 8 and 9 represented the best performing network that can be 

achieved in the present study. The proposed analysis of ANN model I-1 is shown 

in Fig. 12. 
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Fig. 12. Studied ANN model I-1
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   (a) ANN model I-1         (b) ANN model II-1         (c) ANN model II-1
Fig. 13. Measured and predicted result of crown value in ANN model I-1, II-1 and III-1

Input Hidden Output Correlation RMSE Correlation RMSE

Crown 50000 10 12 1 0.3/0.5 0.92 8.05 0.84 8.49
Convergence 50000 10 20 1 0.01/0.1 0.80 5.48 0.83 5.05

Foot settlement 50000 10 12 1 0.3/0.5 0.87 11.95 0.86 9.86
Crown 50000 11 18 1 0.2/0.5 0.94 7.14 8.07 0.86

Convergence 50000 11 16 1 0.01/0.1 0.80 5.48 0.84 4.86
Foot settlement 50000 11 12 1 0.3/0.5 0.87 11.72 0.84 10.26

Crown 50000 16 24 1 0.3/0.5 0.94 7.07 0.86 7.98
Convergence 50000 16 20 1 0.01/0.1 0.81 5.33 0.83 5.08

Foot settlement 50000 16 32 1 0.3/0.1 0.88 11.59 0.85 9.99
Crown 50000 19 38 1 0.3/0.5 0.94 7.09 0.86 8.02

Convergence 50000 19 34 1 0.01/0.1 0.80 5.45 0.84 4.91
Foot settlement 50000 19 19 1 0.3/0.5 0.88 11.59 0.87 9.51

ANN
model I-4

ANN structureFinal
epoch

Learning Testing
ANN analysis model I

ANN
model I-3

Learning rate/
Momentum

ANN
model I-1

ANN
model I-2

Table 7. Learning and testing result in Model I

 



- 38 -

Input Hidden Output Correlation RMSE Correlation RMSE

Crown 50000 11 16 1 0.1/0.3 0.94 6.74 0.90 6.90
Convergence 50000 11 12 1 0.1/0.1 0.87 4.58 0.82 5.21

Foot settlement 50000 11 14 1 0.1/0.1 0.91 9.76 0.94 6.35
Crown 50000 12 20 1 0.1/0.3 0.94 6.95 0.90 6.82

Convergence 50000 12 16 1 0.01/0.1 0.81 5.41 0.83 5.08
Foot settlement 50000 12 20 1 0.1/0.5 0.92 9.15 0.93 6.70

Crown 50000 17 34 1 0.1/0.1 0.95 6.46 0.90 6.76
Convergence 50000 17 30 1 0.01/0.1 0.81 5.38 0.82 5.24

Foot settlement 50000 17 22 1 0.1/0.1 0.92 9.61 0.95 5.59
Crown 50000 20 20 1 0.1/0.3 0.94 7.09 0.91 6.66

Convergence 50000 20 36 1 0.01/0.1 0.80 5.45 0.83 5.10
Foot settlement 50000 20 28 1 0.1/0.1 0.91 9.75 0.95 5.66

Learning Testing
ANN analysis model II

ANN
model II-3

Learning rate/
Momentum

ANN
model II-1

ANN
model II-2

ANN
model II-4

ANN structureFinal
epoch

Table 8. Learning and testing result in Model II

Training and testing results are plotted in Fig. 13 in ANN model I-1, II-1 and 

III-1. As see in the figure, the neural network model provided good prediction in 

agreement with measured settlements and its overall performance was much better. 

Fig. 14 shows a comparison of final tunnel behavior predictions for three analyses. 

ANN analysis III-1 gave the good prediction accuracy compared with ANN analyses 

I-1 and II-1. 

Table 9. Learning and testing result in ANN Analysis III
Input Hidden Output Correlation RMSE Correlation RMSE

Crown 50000 12 14 1 0.3/0.5 0.99 3.57 0.93 6.57
Convergence 50000 12 22 1 0.01/0.1 0.92 3.66 0.90 4.00

Foot settlement 50000 12 18 1 0.1/0.1 0.97 4.88 0.95 4.78

ANN
model III-1

Final
epoch

ANN analysis model III Learning rate/
Momentum

Learning TestingANN structure
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     (a) Tunnel A                          (b) Tunnel B
Fig. 14. A measured and predicted results of crown settlement due to excavation length

6. Conclusion
A new form of parameter identification procedure, or back analysis, was 

proposed for tunneling problems at shallow depth. The finding and results are 

summarized as follows.

1) By adopting BPNN algorithm, ANNs were created successfully studying the 

database generated by multiple sets of nonlinear finite element analyses. Testing 

procedure proved that the obtained ANNs have sufficient accuracy in estimating 

both linear and nonlinear material properties.



- 39 -

2) Optimally designed ANNs all produced satisfactory results when compared with 

the measured displacements. 

3) An insight was also pointed out that construction of new and different types 

of database, specially database of measured displacements with various tunnel 

design specifications, would lead to more advanced use of the ANN technique.
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