e
=ho)
<
an
[t
g

2 2xEge] net A ulE A

A
SR

Analyses of Design for Software Security and Web Component

Jung-Tae Kim

Mokwon University

E-mail : jtkim3050@mokwon.ac.kr

(@]
=i

o}
i

This paper explores how to characterise security properties of software components, and how to
reason about their suitability for a trustworthy compositional contract. Our framework provides an
explicit opportunity for software composers as well as software components to test a priori security
properties of software components in a system composition. The proposed framework uses logic
programming as a tool to represent security properties of atomic components and reason about their

compositional matching with other components.

1. Introduction

Software on networked computer systems
must be free from security vulnerabilities.
Security vulnerabilities in software arise
from a number of development factors
that can generally be
software

traced to poor
practices,

modes of attacks, mis-configurations, and

development new

unsecured links between system. An
otherwise secure system can be
compromised easily if the system or

application software on it, or on a linked
system, has vulnerabilities. A
security assesment instrument can aid in
providing a greater level of assurance that
software is not exposed to vulnerabilities
as a result of

software

defective software
requirements, design, code or exposures
due to code complexity and integration
with other applications that are network
aware. A life cycle process that includes
security assurance is needed for improving

the overall security of software. Software

on networked computer systems must be
free from security vulnerabilities. Security
vulnerabilities in software arise from a
number of development factors that can
traced

practices,

generally be software

development

to poor

new modes of
attacks, mis-configurations, and unsecured
links between systems. An otherwise
secure system can be compromised easily
if the system or application software on it,

or on a linked system, has vulnerabilities.
II. Security Mechanism

Software Safety Engineering has become
a required business endeavour. It has been
missiles, warheads,
medical devices, trains, and should soon

executed on aircraft,

be making it's way into communications
systems and even grocery stores. As fast
as an analysis techniques were derived,
applied, technology took
still another step forward, perhaps even
on the project!

and corrected,

same development

- 591 -

A IR EAEE 2008 EFASHEEEWI

Meanwhile, we developed management
plans which allowed wus to integrate
several design, development, analysis, and
test techniques over an entire product life
cycle. This has provided a solid baseline
from which to extend and continuously
improve. Software safety attempts to guide
design through requirements and trade
studies to infuse safety and defuse hazards
from the start. The identifying
assessing of risk is done so that we can
allocate against safety-critical
code and determine remaining risk. An
important service which helps lower risk
is to bring the specific hazards to the
attention of the appropriate designer or
coder and to brief management and the
customers. Once Safety identifies the initial
hazards, requirements are levied against
those requiring fixing, and in what
priority. The key reason is to eliminate or
control the hazard. Later analyses will
statically ensure the hazard has indeed
been controlled and no other hazards were
inadvertently introduced by
implementation. Dynamic testing can prove
that a hazard actually was designed out as
states. Without
requirements, however, there probably will
not be specific code addressing the hazard
nor tests to illustrate the removal of the
hazard. Unless specific contracting
language includes it, separate safety testing
will not occur. Imagine an Application
Specific Integrated Circuit(ASIC) which is
well into manufacturing layup when a
safety hazard is discovered, which the
customer demands be fixed. There will be
perhaps hundreds of
engineering, manufacturing,
plans, and documentation reworked while
the hazard is removed or mitigated. A
special test point may have to be drawn
out of the circuit to allow testing that
device on-line or to insert a fault in
functional qualification tests. The identity
of each hazard must be known and the

and

resources

the requirement

thousands in

hours, test

requirement against it must be testable
(have some external lead perhaps). These
two points need to be front-loaded
(designed-in) or it will cost the company
money to step back and fix it. Concurrent

engineering will either live or die
(economically) by the ability to find
hazards early.

A vulnerability is the result of a

software defect that an attacker can use to
gain illegal access to—or negatively affect
the security of—a computer system. A
vulnerability’s high-level schema includes a

context description (platform, operating
system, language, and so on), title,
description, severity, vulnerability type,

loss type, and reference. SDLC artifacts
include code, software architecture,
software design, penetration tests, and the
fielded system. A principle is. a statement
of general security wisdom derived from

experience. Although principles exist at the

philosophical level, they stem from
practitioners’” real-world experience in
building secure systems. Principles are

useful for both diagnosing architectural
flaws in software and practicing good
security engineering. A sample high level
schema for a principle includes title,
definition (with a description, examples,
and references), related guidelines, and
related rules.

11 Infrastructure of Security Model

A. Vulnerability Matrix
Vulnerability task was
develop a searchable database containing ,

initiated to
vulnerabilities and
exposures catalog them
libraries of properties that can be used in
conjunction with the property based
testing and model based verification
instruments to assess the
software code to assure that the software
is free from the specified vulnerabilities

a taxonomy of

and to into

security of

and exposures

- 592 -

Q AyxdE 9 sxEdo] Bl A didt ¥4

B. Security Assessment Tools
The security assesment tools are free

tools that have been developed and
collected for use in testing and assuring
the security of operating systems and

software. This collecting is provided as a
list on the web sited. A more complete
description of the tools and a discussion
of how to wuse each of
currently being developed

the tools is

C. Property Based Testing

The role of property based testing is to
bridge the gap between formal verification
and ad hoc verification. This provides a
basis for analyzing and as hoc verification.
This provides a analyzing
software without sacrificing usefulness for
rigor, yet capturing the essential ides of
formal

basis for

verification. It also allows a
security model to guide the testing for
security problems. Property based testing
is a technique for testing that programs

meet given specifications.

D. Model Based Security Specification
Model based specification make use of
discrete finite models to verify compliance
of the model *} desired properties; in this
case, software properties. Network security
properties often focus on characteristics
that are manifested though the operation
of multiple software applications and
systems operating concurrently with an

attacking process.

IV. Summary of requirements

Software security is about making
software behave correctly in the presence
of a malicious attack, even though
software failures usually happen

spontaneously in the real world—that is,
without intentional Not
surprisingly, standard software testing
literature is concerned only with what

mischief.

happens when software fails, regardless of
intent. The difference between software
safety and software security is therefore
the presence of an intelligent adversary
bent on breaking the system. Security is
always relative to the information and
services being protected, the skills and
resources of adversaries, and the costs of
potential assurance remedies; security is an
exercise in risk management. Risk analysis,
especially at the design level, can help us
identify potential security problems and
their impact.l1 Once identified and ranked,
software risks can then help guide
software security testing. The basic schema
introduced in the main text describes a
way to organize and interrelate software
security knowledge. Figure 1 shows the
seven distinct knowledge catalogs that we
divide into three knowledge categories.

The knowledge
includes

category prescriptive

three knowledge catalogs:
principles, guidelines, and rules. These sets
span a continuum of abstraction from
high-level architectural principles at the
philosophical level to very specific and
tactical Guidelines fall
middle of this

continuum. As a whole, the prescriptive

code-level rules.

somewhere in the

knowledge category offers advice for what
to do and what to avoid when building
secure software. The diagnostic knowledge
category includes three knowledge

Avtack paltterns Exploit

Readized vl

1 ;’

2 1 Villnesabiity Histareabrisk: §

Fig. 1 Software security knowledge objects
and a basic interrelating architecture.

- 593 -

A FRETAHF 2008 EASTHEEHS

V. Characteristics of Secure Software

Secure software refers to programs
bugs or exploits
vulnerable to abuse and malicious attack.

These security exploits are defects inside

without security

programs that will lead to damages to
users or the environment. Secure programs
should be rigorously developed and
analyzed. The
software include;

characteristics of secure

- Enforcement of confidentiality

- Enforcement of data integrity

- Minimized privilege

- Confinement or compartment

- Enforcement of mandatory access control

- Keeping code secure from unauthorized
or malicious use

VI. Component Security Threats

Component based development offers
great
production costs through software reuse.
Capacity to
features,
experimental knowledge make components

promise in reducing software

acquire and absorb new

new technologies and

an ideal medium for

intellectual assets.

encapsulating

6.1 Role of trust and reliability
Components can be software acquired
from vendors and suppliers, open source
software and,
downloadable
security, this raise two important issues:
trustworthiness of the supplier
trustworthiness of the product.

increasingly,
software. In

freely
terms of

and

6.2 Overview of security models

Some knowledge of certain security
models s identifying the
security features that are most relevant to

essential for

component security. With
various security goals, confidentiality and
integrity appear to be the most pertinent
to component based design. These form
of several widely known

respect to

the concerns
security models.

6.3 Modeling, analysis and testing

Though it goes against the definition of
component, a detailed knowledge of
component’s internal structure undoubtedly
helps "components analysis at a finer
granularity, enabling a better control over
component’s behavior.

VII. Conclusion

Software vulnerability is second only to
identity theft as the main security problem
of the modern Internet. We propose an
approach to reversing the trend that is
inexpensive and consistent with existing

and known successful programming
practice.

References
[1] David Aucsmith, "Tamper Resistant

Software: Anlmplementation”, Proceedings
of the First International Workshop on
Information Hiding, Pages: 317-33, 1996,
LNCS 1174

[2] Toshio Ogiso ,Yusuke
Masakazu Soshi,and Atsuko
"Software Tamper Resistance Based on the
Difficulty of Interprocedural Analysis",
WISA 2002, Cheju Island, Korea, August
28-30, 2002

[3] G Hoglund and G. McGraw,
Exploiting Software: How to Break Code,
Addison-Wesley, 2004.

Sakabe,
Miyaji,

- 504 -

