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ABSTRACT

In this paper, an overview on the ordering sphere decoder (SD) class for space-time codes
(STC) will be presented. In 5Ds, the ordering techniques are considered as promising methods
for reducing complexity by exploiting a sorted list of candidates, thus decreasing the number of
tested points. First, we will present the current state of art of SD with their advantages and
disadvantages. Then, the overview of simply geometrical approaches for ordering is presented to
address the question to overcome the disadvantages. The computer simulation results shown that,
thanks to the aid of ordering, the ordering SDs can achieve optimal bit-error-rate (BER)
performance while requiring the very low complexity, which is comparable to that of linear

sub-optimal decoders.
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| . Introduction

Multiple-input and multiple-output (MIMO)
systems have been promising approaches for
enhancing both data transmission rate and
transmission  quality for the next-generation
communication system due to the fact of exploitation of
both spatial multiplexing and diversity gain [1]-{2]. In
order to fully realize the capacity and diversity potential
in the MIMO systems, optimal maximum-likelihood
detection (MLD) and other optimal decoding algorithms
are crucially desired. MLD, although allows to attain
optimal  bit-error-rate (BER)  performance, its
complexity, which is exponentially proportion to the
number of transmit antenna and the level of modulation
scheme, makes it impractical.

By relaxing the BER performance, a bunch of
sup-optimal decoder classes have been proposed with
very low complexity. Successive Interference
Cancellation (SIC) and Ordering SIC are some names of
them [3]-{4]. In spite of the fact that SIC or OSIC
decoders reduce detection complexity, their solution is
suboptimal and is significantly outperformed by the
optimal one. Thus, techniques for achieving the optimal
solution at reduced complexity are desirable. One of
such techniques is sphere decoding, which allows the
optimal solution to be reached at polynomial average

complexity [5]-[9]. It is shown that in SD, the tree
search is a crucial process to determine the complexity
of the decoder algorithms. In other words, the quicker
the search is, the lower complexity the decoder
algorithm is. Therefore, in order to accelerate the search
process, many techniques have been proposed for
preparing an optimal set of test-needed candidates. In
this study, we will present a review of simply
geometric-based ordering techniques for decoders.

The remaining of paper is organized as follows.
Section II will present the system model of a MIMO
system. The Sphere Decoders will be revised in Section
111. The ordering techniques will be given in Section IV.
Performance and complexity comparison of ordering

sphere decoders and their counterparts are given in
Section V. The conclusion of the study is presented in
the final section, Section V1.

If. System model

We consider an uncoded V-BLAST MIMO
system with 7, transmit and ngp receive
antennas (ny = nq). The bit data sequence is first
mapped using a certain M-ary modulation scheme to
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form a transmit symbol vector &= [5182... 8,07,
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then is transmitted from 74 transmit antennas to the
receiver. With assumption that the signals are narrow
band, the received signal vector can be formed as
follows:

Y= Hs+w m

Where w represents the noise samples at np receive
antennas, which are modeled as independent samples of

zero-mean and variance o complex Gaussian random
variable, H is the ng>Xn, channel matrix, whose
entries are the path gains between transmit and receive
antennas modeled as the samples of zero-mean complex
Gaussian random variable with equal variance of 0.5 per
real dimension. In addition, we assume that the signals
transmitted from individual antenna have equal power of
Plnp

lll. Sphere decoder

Sphere decoders were first proposed to find vectors of
shortest length in a given lattice by Fincke and Pohst
[5]. It then has been adjusted to solve the so-called
integer least-square problem:

argmin__ .z —Mul? (2

Where x is an 2 X 1 real vector, M is an m X n real
matrix called the lattice-generating matrix, Z" denotes
the n-dimensional integer lattice, and % is an n. X1
vector with integer entries.

It is easy to see that, for an uncoded MIMO system
employing M-QAM symbols, after real-decoupling
signal model of (1), we can apply (2) for finding ML
solution.

u= argmin _ .llz— Mul? 3)

The idea behind SD is to search over only lattice points
that lie in a certain hypersphere of radius (j, centered at
the received signal z. It is obvious that the closest
lattice point inside the hypersphere is also the closest
point in the whole lattice, and is the ML solution.

The main issue to be resolved is how to find the closest
lattice point in the hypersphere. A lot of efforts have
been put into the search for algorithms achieving ML or
near-ML performance with lower complexity.

A) Real-valued Sphere Decoders
Real-valued sphere decoders were proposed to solve the
ML decoding problem in (3). A lattice point Mu is in a
hypersphere of radius () centered at z if and only if
lz— Ml < C, @

Let the channel matrix M be QR decomposed as
M=(Q QIR 04,y

Where R is an n X n real, upper triangular matrix,
is an m Xm real, orthogonal matrix, ; and @,
respectively contains the first n and the last m-n

columns of @.

Then the condition (4) can be rewritten as:

1@~ Rul® < C)— i@zl &)
Defining y= Q%% and C= C,— Q@ ?, (5) can be

reexpressed as:
n

D y— i}n—,ju]-) <C ©)
Jj=ti

i=1
where 7; ; is the entry at row i and column j of R.

It can be seen that, the necessary condition for Mu to
lie inside the sphere is that

(yn_rn,nui) = C (7)
Equivalently,

-+ C+
LB(u,) = ‘f o < ‘/T_ Yo UB(u,) (8)

Continuing in a similar fashion for u; (i=1,.,n—1) we
have LB(u;) < u; < UB(y,;).
Based on the intervals [ZB(w,),UB(y;)], so-called
natural spanning [5], Pohst considered the enumeration,
and u, takes on the sequence of values: LB(y;),
LB(u;)+2,...,.UB(u,).
The other variation of the Pohst strategy, where the
intervals are spanned in a zigzag order, starting from the
middle point [6]:
:l;i: [ L(?!i - Z Ti,j“j) ] )]

Tii j=i+1
Where [ .| denotes round function.
Therefore, Schnorr-Euchner enumeration will produce at
each level i the sequence for w; as follows:

n

Yi— Z Ti 5 " Tii ;20
j=itl

wE{u,u+2,94-2,u+4,..} N [LB(y,),UB(,)]

- If then

Y. — Z Ti,juj—ri,i:l;is 0
j=i+1

v, €{u,0—2,0+2,u—4,..} N [LB(y;),UB(y;)]
As mentioned above, in order to apply real-valued
sphere decoder, a complex MIMO system must be
decoupled into its real and imaginary parts so as to form
an equivalent real-valued system. Consequently, they
are most efficient for lattice-based modulation schemes
such as M-QAM or PAM. For other complex
constellation, namely, M-PSK| the use of the real-valued
SDs is inefficient due to the existence of "invalid"
candidates, leading to degradation in system
performance. The problem of invalid candidates can be
solved by using the method of eliminating "invalid”
candidates or the complex sphere decoders [7]-{9].

- If then

B) Complex Sphere Decoders

In general, the complex Sphere Decoders follow all
steps of the real-valued SD discussed previously. The
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main difference is that the QR decomposition is applied
directly to the complex system. Similarly, we also have
a necessary condition as:

o, — R, .z < C (10)
Equivalently
b, —v./ B, P < C/RY, an

This inequality limits the search to points of the
constellation contained in a complex disk of radius
d,=VC/R,, centered at z,=v,/R, . Let z, is a
M-PSK symbol, 0={0,27/M,...,2n{M—1)/M},
the intersection of boundary can be found by:
cos (8, ~8)>n (12)
It is easy to see that [7]:
- If 17 > 1, then the search disk doesn't contain
any point of the M-PSK constellation.
- If  <—1, then the search disk includes the
entire constellation.
- If —~1<#n<1, the possible angle for
searching z, satisfies (12)

V. Simply geometrical ordering techniques

As we can see from the discussion above, the crucial
point to reduce the complexity of SDs is to construct the
most optimal candidate set. The optimization here
means that the set of candidates contains as small
number of candidates as possible, and the set of
candidates need as less number of search to reach the
solution as possible. Normally, the set of candidates is
sorted based on the increasing of its Euclidean distance.
As a result, this Jeads to a bottleneck of computation if
the system is large and/or the high-level modulation
scheme is employed. A lot of efforts have been put into
dealing with this issue. In this section, we present three
popular ordering techniques, namely PAM-oriented
ordering, QAM-oriented ordering, and PSK-oriented
ordering.
A) PAM-oriented ordering

Let z= {2, Z;...2y) be N integers in Z. [lustrated in
Fig.1 is the approach to specify the optimal testing order
for z, €7 at layer k, simply by comparing z, with
appropriate  b-boundaries and c-boundaries [9].
b-boundaries are constructed as the line-boundary
between the two adjacent corresponding constellation
points, while c-boundaries are constructed as the
line-boundary passing the corresponding consteliation
point. For example, it is easy to see from Fig.1 that, z,
is the first values to be tested. In addition, z, < £ 12,
the optimal testing order for all for values in z are
(25,23,%4,21). In case of z, > Ry ,zy, the detection
order will be (23, 24,25, 21).

It is easy to see that for real-valued decoupled system,

PAM-oriented ordering can also be directly applied.

Figure 1. Hlustration of PAM-oriented ordering
technique

B) QAM-oriented ordering

The illustration of QAM-oriented ordering is given for
16-QAM in Fig.2 [10]. In the first step, through the first
quadrant detection of z,, the region where ,, is located
is roughly selected by comparing real and imaginary
parts (so-called I and Q components) with the real and
imaginary axes. In the next step, we shift the coordinator
so that the new origin coincides with the center of the
selected region. Then, through the quadrant detection, a
smaller region where z, is located is detected. By
repeating this process N times (N=3 for 16-QAM), we
can divide and construct the detection order for all
constellation.
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Figure 2 Ilustration of QAM-oriented
ordering technique
C) PSK-oriented ordering

Due to the special constant-modulus structure of M-PSK
the above two ordering techniques can not be applied. A
very simple method of specifying the optimal testing
order for all signal points at level k just by comparing
the slopes, which is simply resulted from real division
operator, of straight lines passing the origin is depicted
in Fig.3 [9). For simplicity, we consider a 8-PSK
constellation, and Jet 2= (2;,%5,..,23) be 8 signal
points from that constellation. First, the slope of the
straight line passing the origin and the received point
can be computed as:
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a, =mn{x,}/Re{x,} (13)

Where Im{} and Re{} denote the real and imaginary
parts, respectively. Then, by comparing a;, in (13) with
the slopes bl, b2, b3 and b4 of the four solid lines, we
are able to locate region when the received point z,
belongs to. As a result, the first symbol to be tested,
namely, z;, and the slope ¢; of the dashed line passing
the origin and the point R, ;2 can easily be obtained.
For each given M-PSK, it has its own pre-determined
b-boundaries and c-boundaries. Finally, by comparing
a,, with ¢;, the detection orders of the remaining symbols

can be achieved without difficulty. For example, one can
observe from Fig.4 that b, < a; < b, therefore, z, will
be the first symbol to be tested. In addition, since
a,, < c,, the optimal testing order for 8 signal points is
(2’2721 723,28,24,Z7,25,26)_ In case ay = C«z, the
optimal order becomes (2, 23, 21, 24, 25 , 25 , 27 Z¢) -
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Figure 3 [Illustration of PSK-oriented

ordering technique

V. Performance and complexity

In this section, the computer simulations are
implemented to evaluate and compare the bit-error-rate
(BER) performance and complexity of the ordering
Sphere Decoders and their counterparts.

Fig.4 illustrates the BER performances of brute-force
maximum-likelihood, the PAM-oriented ordering SD,
the QAM-oriented ordering SD and PSK-oriented
ordering SD. In our simulation, we assume that the
signals are transmitted on a burst-by-burst basic. In
addition, the channel is assumed to be quasi-static
within each burst and randomly change from on burst to
the next. The 6 transmit - 6 receive antenna system
employs 8-PSK, 16-QAM scheme. The complex system
is real-valued decoupled to apply PAM-oriented
ordering SD. As we can be seen, the BER performances
are almost identical. This means that the PAM-oriented
ordering SD, QAM-oriented ordering and PSK-oriented
ordering SD are optimal decoders.

BER

[ 7| —8—MLD, 8-psK
107z —©—QAM-00 SD, 16-QAl
| —=—PAM-00 5D, 16-QA
[ —B—wMLD, 16-0AM

6 8 10 12 14 16 18 20 22 2
Average SNR per receive antenna [d8]

Figure 4: BER performance comparisons

The average complexities of the PAM-oriented ordering
SD, QAM-oriented ordering, the PSK-oriented ordering
and the linear MMSE-SQRD-based decoder [4] are
compared in Fig. 5. The set-up for the simulation is
similar to that for Fig.4. As can be seen from Fig.5, the
average complexity of the ordering SD classes can be
comparable with that of linear decoder while they allow
to obtain ML-like BER performance.

10°

Average flops per burst
3

6 8 10 12 14 186 8 20 22 24
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Figure 5. Average Complexity Comparison
V. Conclusion

This study has presented a review on three simply
geometrical approaches for optimally ordering the tested
set of the sphere decoders. Each of them is proposed for
certain signal constellation characteristics, namely
PAM, QAM and PSK. By applying these simply
geometrical approaches, the decoders not only are
accelerated in reaching the optimal solution, but also is
significantly reduced the number of computations
required for preparing the set of tested candidates. It is
also worth mentioning that these approaches are not
limited in the context of SDs, they can be applied to any
decoders exploiting tree-search, such as QRD-M
decoder.
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