산재보험 부정수급 식별모형에 관한 연구

A Study on the Fraud Detection of Industrial Accident Compensation Insurance

  • 함승오 (서울산업대학교 IT정책대학원) ;
  • 홍정식 (서울산업대학교 산업정보시스템공학과)
  • 발행 : 2008.10.31

초록

산재 발생 시 산재근로자는 근로복지공단을 통해서 각종 급여를 받게 된다. 본 논문은 심사 과정과 급여지급 후에 부정수급으로 판명된 산재 청구 건을 데이터 마이닝을 통해서 분석하여 부정수급의 유형을 발견하고자 한다. 이 연구에서는 서울관내 4개 지사에서 8년 동안(2000년$\sim$2007년)의 총 61,536명의 최초요양 신청을 한 산재근로자 자료를 대상으로 하였고, 종속변수에 영향을 미치는 8개의 독립변수를 선택해서 사용한다. 데이터 마이닝을 적용함에 있어서 가장 효율적인 허위 부정 탐지 모델을 만들기 위해 의사결정나무분석(Decision Tree)과 로지스틱 회귀분석(Logistic Regresion)등의 다양한 기법을 적용하여 결과를 비교분석 하고, 오분류 비용을 적용하여, 최적의 분류결정 값을 가지는 모델을 도출한다. 분석결과, 로지스틱 회귀분석이 산재보험 부정수급 유형 발견에 보다 효과적인 모델로 판명되었다. 또한 판별점(Cut-Off) 0.01로 했을 때 4개변수(요양기간, 업종형태, 의료기관, 재해발생형태)가 부정수급에 탐지하는데 영향력이 큰 변수로 선정되었다.

키워드