다열 커튼월-파일 방파제에 의한 불규칙파의 반사와 투과에 관한 수리실험 Hydraulic Experiments of Reflection and Transmission of Irregular Waves by Multiple-row Curtainwall-pile Breakwaters

지창환¹, 서경덕² Chang-Hwan Ji¹ and Kyung-Duck Suh²

1.서 론

투과성 방파제 중 하나인 커튼월 방파제와 파일 방 파제의 장점을 결합한 커튼월-파일 방파제가 Suh et al. (2006)에 의해 개발되었다. Suh and Ji (2006)는 방 파제에 작용하는 파력과 모멘트를 줄이면서도 장주 기파의 투과를 줄여줄 수 있으며, 상부 공간을 활용하 기도 쉬운 형태인 다열 커튼월-파일 방파제에 대한 규칙파 모형을 개발하고 수리모형실험을 실시하였 다. 지창환과 서경덕 (2007)은 규칙파 모형을 불규칙 파모형으로 확장하였으며, 그 결과를 규칙파 모형 및 부산국제여객터미널에 설치된 투수식 소파판의 불 규칙과 수리모형실험 결과와 비교하였다. 투수식 소 파판은 다열이면서 투과성 방파제라는 점에서 다열 커튼월-파일 방파제와 구조가 비슷하지만 파 에너지 가 집중되는 상부에서 파 에너지를 투과시킨다는 차 이가 있다.

본 연구에서는 다열 커튼월-파일 방파제에 의한 불 규칙파의 반사율과 투과율을 측정하는 수리모형실 험을 수행한다. 또한 실험 결과를 지창환과 서경덕 (2007)의 불규칙파 모형의 계산 결과와 비교한다.

2.실 험

수리모형실험은 서울대학교 해안공학연구실의 2 차원 조파수조에서 수행하였다. 높이 1 m, 폭 0.6 m, 길이 30 m 의 수조 양 끝에는 경사식 소파장치가 설 치되어 있으며, 수조의 한 쪽 면은 강화유리로 되어있 어 실험 관측이 가능하다. 수조에는 피스톤식 조파기 가 설치되어 있으며, 조파기의 조파판으로 부터 약 18.5 m 떨어진 지점에 방파제 모형을 설치하였다.

모든 실험을 수심 0.5 m 에서 실시하였으며, 대부 분의 경우 2열 방파제에 대해서 수행하였으나 3열 방 파제에 대해서도 일부를 수행하였다. 방파제 하단의 파일부분은 가로, 세로가 각각 3 cm 인 정사각형 파일 을 사용하였다. 파일부분의 유공율 (a_j/A_j) 을 0.25, 0.4, 0.5 로 만들기 위해 두 파일 사이의 간격 (a_j) 을 각 각 0.5, 1.0, 1.5 cm 로 하였다. 상부 커튼월 부분의 흘 $\uparrow(d_j)$ 는 25, 30, 37.5 cm 로 하였으며, 방파제 두 열 사 이의 거리 $(x_{j+1}-x_j)$ 는 25, 50, 75, 100 cm 로 하였다. 모든 실험에서 첫 열 파일부분의 유공율과 커튼월의 흘수는 각각 $r_1 = 0.5$, $d_1 = 25$ cm 이며, 두 번째와 세 번째 열은 파일부분의 유공율과 커튼월의 흘수를 각 각 다르게 조합하여 사용하였다. 또한 각 열은 월파가 일어나지 않을 정도로 충분히 높게 제작하였다.

 γ = 3.3 인 JONSWAP 스펙트럼을 이용하여 불규칙 파를 생성했으며, 여섯 개의 피크주기(T_p = 1.0, 1.2, 1.4, 1.6, 1.8, 2.0)에 대하여 파형경사(H_s/L_p)가 0.03 이 되는 유의파고를 사용하였다.

입반사파 스펙트럼을 측정하기 위한 파고계는 방 파제 첫 열의 전면으로 각각 3.5, 3.8, 4.0 m 떨어진 곳 에, 투과파 스펙트럼을 측정하기 위한 파고계는 방파 제 첫 열에서 후면으로 3.5 m 떨어진 곳에 설치하였 다. 경사식 소파장치에서의 반사율은 충분히 작았으 므로 반사파는 무시하였다. 처오름을 확인하기 위한 파고계도 방파제 첫 열의 앞뒷면에 설치하였다. 조파

¹ 서울대학교 건설환경공학부 박사과정

² 서울대학교 건설환경공학부 교수

Fig. 1. Definition sketch of multiple-row curtainwall-pile breakwater: (a) side view; and (b) bird's-eye view of *j*-th row.

기를 작동시킨 후 300초 동안 초 당 20개의 파고자료 를 얻은 다음 최초 60초 동안의 자료를 제외한 4,096 개의 자료를 이용하여 스펙트럼을 분석하였다. 입반 사파 스펙트럼 분리는 Suh et al. (2001)의 분리법을 사 용하였다.

3.결 과

불규칙과 모형에서 사용된 고유함수전개법에서 는 1개의 진행파와 49개의 소멸파를 이용하여 계산 했으며, 소멸파 개수가 약 30개 이후로는 일정한 값 으로 수렴하는 것을 확인하였다. 또한 여기서 제시하 는 모든 결과에서, 방파제 첫 열 커튼월의 흘수 및 파 일부분의 유공율은 0.5h 및 0.5로 고정하였다.

두 번째 열의 흘수 및 유공율의 변화 두 열 사이의 거리에 변화가 방파제의 반사와 투과에 미치는 영향 을 살펴보았다. Table 1에는 2열 커튼월-파일 방파제 에서의 반사율과 투과율의 관측값을 나타내었다. 커 튼월의 흘수가 작아지거나 파일부분의 유공율이 커 질수록, 입사파의 주기가 길어질수록 투과율은 높아 지고 반사율은 낮아지는 것을 볼 수 있다. 열 사이의 간격은 주파수 평균한 반사율과 투과율에 별 다른 영 향을 미치지 않는다는 사실을 알 수 있다. Table 1의 결과에서 수치 모형의 상대오차는 다음 식으로 계산 된다.

$$error = \frac{A^p - A^o}{A^p} \times 100 \%$$
 (1)

여기서 A는 실험변수 $\overline{C_r}$ 과 $\overline{C_t}$ 를 뜻한다.

Fig. 2. Comparison between observed and predicted frequency-averaged transmission coefficient and reflection coefficient for double-row CPB's

Fig. 2는 주파수 평균한 반사율과 투과율의 관측값 과 예측값을 비교한 것이다. 예측값이 관측값에 비해 반사율에서는 약간 과대예측을, 투과율에서는 과소 예측을 하였지만 전체적으로 두 결과가 잘 일치하는 것을 볼 수 있다. 두 값의 일치정도를 수치화하기 위 해 Index of Agreement (I_a)를 이용 하였다. I_a 는 반사 율에서는 0.917, 투과율에서는 0.897 이었다.

$$I_{a} = 1 - \frac{\sum_{i=1}^{N} (P_{i} - O_{i})^{2}}{\sum_{i=1}^{N} (|P_{i} - \overline{O}| + |O_{i} - \overline{O}|)^{2}}$$
(2)

T_p	H_{s}	$\frac{x_2 - x_1}{h}$	$\frac{d_2}{h}$	r_2	Predicted		Observed		$x_2 - x_1$	d_2		Predicted		Observed	
					$\overline{C_r}$	$\overline{C_t}$	$\overline{C_r}$	$\overline{C_t}$	h	h	<i>T</i> ₂	$\overline{C_r}$	$\overline{C_t}$	$\overline{C_r}$	$\overline{C_t}$
1.0	4.54	1.00	0.50	0.50	0.927	0.005	0.814	0.213	0.50	0.50	0.50	0.910	0.079	0.762	0.299
1.2	6.14				0.816	0.158	0.704	0.293				0.760	0.217	0.690	0.399
1.4	7.71				0.663	0.301	0.620	0.397				0.613	0.390	0.675	0.399
1.6	9.23				0.535	0.630	0.569	0.470				0.562	0.491	0.582	0.542
1.8	10.71				0.470	0.511	0.556	0.526				0.534	0.543	0.567	0.606
2.0	12.17				0.458	0.537	0.534	0.569				0.522	0.561	0.558	0.630
1.0	4.54	1.00	0.60	0.50	0.928	0.042	0.808	0.184	1.50	0.50	0.50	0.928	0.087	0.830	0.205
1.2	6.14				0.820	0.127	0.724	0.258				0.854	0.144	0.755	0.275
1.4	7.71				0.668	0.254	0.643	0.350				0.735	0.250	0.676	0.363
1.6	9.23				0.532	0.381	0.573	0.409				0.612	0.360	0.593	0.433
1.8	10.71				0.462	0.468	0.555	0.470				0.517	0.447	0.566	0.499
2.0	12.17				0.452	0.497	0.516	0.513				0.488	0.482	0.522	0.538
1.0	4.54	1.00	0.75	0.50	0.929	0.027	0.811	0.173	2.00	0.50	0.50	0.911	0.110	0.820	0.246
1.2	6.14				0.825	0.089	0.711	0.236				0.851	0.206	0.780	0.283
1.4	7.71				0.679	0.187	0.646	0.301				0.777	0.258	0.689	0.361
1.6	9.23				0.538	0.296	0.557	0.365				0.678	0.335	0.636	0.406
1.8	10.71				0.461	0.383	0.547	0.424				0.591	0.406	0.580	0.470
2.0	12.17				0.453	0.416	0.517	0.448				0.557	0.439	0.538	0.502
1.0	4.54	1.00	0.50	0.40	0.927	0.051	0.803	0.216	1.00	0.60	0.40	0.928	0.038	0.815	0.175
1.2	6.14				0.817	0.145	0.714	0.300				0.822	0.116	0.714	0.256
1.4	7.71				0.666	0.279	0.622	0.394				0.671	0.234	0.626	0.336
1.6	9.23				0.535	0.403	0.565	0.453				0.533	0.353	0.562	0.390
1.8	10.71				0.466	0.484	0.559	0.501				0.459	0.438	0.544	0.452
2.0	12.17				0.453	0.511	0.519	0.548				0.448	0.468	0.514	0.487
1.0	4.54	1.00	0.50	0.25	0.928	0.040	0.823	0.177	1.00	0.75	0.25	0.930	0.020	0.815	0.115
1.2	6.14				0.821	0.117	0.728	0.244				0.828	0.064	0.717	0.162
1.4	7.71				0.671	0.231	0.644	0.318				0.687	0.136	0.612	0.221
1.6	9.23				0.531	0.350	0.560	0.405				0.549	0.217	0.565	0.282
1.8	10.71				0.443	0.444	0.550	0.472				0.464	0.286	0.546	0.319
2.0	12.17				0.399	0.510	0.532	0.506				0.450	0.315	0.527	0.337

Table 1. Summary of experimental results for double-row CPB's

Fig. 3과 4에는 관측값과 예측값을 비교하기 위하 여 반사파 및 투과파 스펙트럼을 그렸다. 여기서 실선 은 관측값이고 파선은 예측값이다. 반사파 스펙트럼 과 투과파 스펙트럼은 관측된 입사파 스펙트럼의 피 크 에너지 밀도로 정규화 했다. 모든 스펙트럼은 입사 파 스펙트럼의 피크 주파수로 정규화된 주파수(*f*/*f*_p) 의 함수로 나타내었다.

Fig. 3은 (x₂-x₁)/h=0.5, r₂=0.5, d₂/h=0.5, T_p=1.4 s, H_s=7.71 cm인 경우의 결과이며, 상대오 차가 6.21 % 로 가장 작은 경우이다. 모든 주파수 영 역에서 수치결과가 약간 과소예측을 하고 있지만 주 파수에 따른 파의 특성은 잘 재현되고 있다.

Fig. 4 $\stackrel{\scriptstyle\smile}{=}~(x_2-x_1)/h=1.0,\ r_2=0.5,\ d_2/h=0.75,$

 $T_p = 1.0 \ s, H_s = 4.54 \ cm 인 경우의 결과이며, 상대오$ 차가 276.72 % 로 가장 큰 경우이다. 반사파 스펙트럼에서 피크에서를 제외하고는 예측값의 에너지 밀도가 관측값보다 조금 작았다. 투과파 스펙트럼에서 두값이 비교적 잘 맞지만 예측값이 너무 작아서 상대오차가 쉽게 커지는 경향이 있다.

4. 결 론

본 연구에서는 다열 커튼월-파일 방파제에 의한 불 규칙파의 반사율과 투과율을 측정하는 수리실험을 실시하였다. 수리실험 결과를 불규칙파 모형을 이용 한 계산결과와 비교하였으며, 계산결과는 주파수 평 균한 반사율 및 투과율과 반사파 스펙트럼 및 투과파

Fig. 3. Measured and predicted spectra with $\overline{C_r^p} = 0.613$, $\overline{C_r^o} = 0.675$, $\overline{C_t^p} = 0.390$, and $\overline{C_t^o} = 0.399$ for incident wave spectrum with $T_p = 1.4s$.

Fig. 4. Measured and predicted spectra with $\overline{C_r^p} = 0.929$, $\overline{C_r^o} = 0.811$, $\overline{C_t^p} = 0.027$, and $\overline{C_t^o} = 0.173$ for incident wave spectrum with $T_p = 1.0s$.

스펙트럼을 잘 재현하였다.

주파수 평균한 반사율 및 투과율 계산결과는 반사 에서는 약간 과대예측, 투과에서는 과소예측을 하는 경향이 있었다.

반사파 및 투과파 스펙트럼의 비교에서는 피크주 기가 짧아질수록 상대오차가 커지는 경향이 있었다. 하지만 상대오차가 큰 경우에도 비교적 두 결과는 잘 일치하였다.

감사의 글

본 연구는 서울대학교 SIR BK21 (안전하고 지속가 능한 사회기반건설)사업단과 한국해양수산기술진흥 원의 해양한국발전프로그램(KSGP)의 연구비 지원으 로 수행되었으며, 이에 감사의 뜻을 표합니다.

참고문헌

- 지창환, 서경덕 (2007). 다열 커튼월-파일 방파제에 의한 불규칙파의 반사 및 투과. 대한토목학회 정 기 학술대회 논문집, 662-665.
- Suh, K.-D., and Ji, C.-H. (2006). Reflection and Transmission of Regular Waves by Multiple-Row Curtainwall-Pile Breakwaters. Proc. 30th Int. Conf. on Coastal Eng.(ICCE), ASCE, Reston, Va., 4303-4313.
- Suh, K. D., Park, W. S., and Park, B. S. (2001). Separation of Incident and Reflected Waves in Wave-Current Flumes. Coastal Engineering, 43, 149-159.
- Suh, K.-D., Shin, S., and Cox, D. T. (2006). Hydrodynamic Characteristics of Pile-supported Vertical Wall Breakwaters. J. Waterw., Port, Coastal, Ocean Eng., ASCE, 132(2), 83-96.