MIKE21 모형을 이용한 마산해역 범람모의 Inundation Simulation at Masan Coastal Zone by MIKE21 Model

박선중1, 문승록2, 강주환3, 윤종태4 Seon Jung Park¹, Seung Rok Moon², Ju Whan Kang³ and Jong Tae Yoon⁴

1.서 론

해양 및 해안에 적용되는 천수방정식을 이용한 수 치모형에 기압차 및 바람응력 등을 포함하면 해일모 의가 가능해진다. 여기에 조간대 모의까지 포함시킬 경우 해일과 범람을 동시에 모의할 수 있게 된다. 최 근 널리 사용되고 있는 대부분의 상용 프로그램은 이 두 가지 조건을 충족시키고 있으며, 이들 상용프로그 램을 이용하면 조석, 해일, 범람 등을 한꺼번에 모의 할 수 있게 되므로 조석과 해일 상호간의 비선형 효 과가 감안됨은 물론이고 태풍조건(경로, 강도, 규모 등)에 따른 해일고 및 범람영역을 동시에 계산할 수 있어 극조위 재현기간 산정을 위한 Monte-Carlo 해 석 등에도 적용이 가능해진다(McInnes et al., 2003).

국내에서 해일 및 범람과 관련된 대상지역은 크게 3개 지역으로 구분할 수 있다. 1983년과 1993년 지 진해일 피해에 따른 임원항을 중심으로한 동해안 일 대, 1997년 대조시에 태풍 WINNIE의 간접영향에 따른 서해안(목포, 군산, 평택 등) 일대 그리고 2003 년 태풍 MAEMI(0314)의 내습으로 막대한 범람피 해가 발생한 마산만을 중심으로한 남해동부해역이 주요 관심지역이다. 특히, 태풍 MAEMI(0314) 발생 에 따른 남해동부해역은 인접한 지역에서도 지형적 영향에 따라 그 피해양상이 다르게 나타나고 있으며, 해일발생이 고조위인 조위상황에서 발생함에 따라 특히 마산지역에 막대한 범람피해를 유발하였다. 본 연구에서는 남해동부해역의 태풍 매미 재현을 통해 마산해역에서 범람을 재현하고, 주요지점에서 발생한 해일고를 조위관측소의 조위편차 빈도분석 결과와 비교하였다. 또한 박선중 등(2008)의 태풍 경 로의 직선화를 반영한 가상모의를 통해 마산해역의 범람 양상을 파악하였다.

2. 남해동부해역 해일모의 적용

2.1 남해동부해역의 조위편차

남해동부연안의 조위관측소는 부산, 통영, 마산, 가덕도, 울산, 거제도 등이 있다. 본 연구에서는 태풍 MAEMI(0314)시 관측자료가 양호한 부산, 마산, 통 영에 대하여 검증을 실시하고, 장기관측자료가 확보 된 부산과 통영을 중심으로 조위편차 빈도분석을 통 해 비교하고자 한다.

Fig. 1은 조위관측소별 고극조위 연별변화를 나타 낸 것으로 가덕도를 제외하고는 연간 0.3~0.7 cm씩 증가되고 있는 양상을 나타내고 있다. 그립1에서 보 는 바와 같이 2003년 태풍 MAEMI(0314)시 해일고 가 고조위 상황에서 발생함에 따라 그 영향이 반영된 것으로 사료되며, 가덕도의 경우는 당시 관측자료가 격측됨에 따라 그 영향이 반영되지 않았다. 이때 활 용된 고극조위 자료는 국립해양조사원 (www.nori.go.kr)의 온라인 제공자료이다.

연안에서 조위 및 파랑에 대한 빈도분포는 연안의 개발과 해안 및 항만구조물의 신뢰성 설계 측면에서 매우 중요하게 부각되고 있으며, 조위 및 파랑에 대

¹ 목포대학교 건설환경협동과정 박사과정

^{2 (}주) 지오시스템리서치 연구기획부 과장

³ 목포대학교 건설공학부 토목공학전공 교수

⁴ 경성대학교 건설/환경공학과 토목공학전공 교수

한 빈도분포에 대한 연구는 활발히 연구되고 있다. 또한 동일 맥락에서 해역에 발생하는 고극조위의 빈 도분석도 고조위 및 고조위편차 연최대치와 연초과 치 계열을 대상으로 극치분석이 되고 있는 실정이다. 본 연구에서는 연별 고극조위자료와 일최대조위편 차 및 월최대조위편차를 활용하여 극치분석하였다. Table 1은 연별 고극조위을 활용한 결과로서 Fig. 1 의 자료를 활용하였으며, Gumbel-Chow 방법과 Log-Normal 방법을 적용하였다. Table 2는 조위관 측소의 관측시작시기부터 1시간 조위관측자료를 통 해 일 최대조위편차와 월 최대조위편차를 산정한 후, 각각의 자료를 통해 Gumbel 및 Weibull의 방법을 적용하여 산정하였다. Table 2는 조위가 고려되지 않은 환경에서의 분석으로 Table 1과 직접적인 비교 는 무리가 있지만, Table 1의 결과에서 약최고고조 위면을 제거하면 부산, 통영, 울산은 비교적 동일범 위에 해당하는 것으로 나타났다. 가덕도의 경우는 일 최대 및 월 최대 조위편차 빈도해석 결과가 연별 고 극조위 빈도해석 결과에 비해 크게 나타나고 있다. 가덕도 조위관측소가 위치상으로는 부산, 통영 관측 소 중간에 위치하고 있는데 타 관측소와 다른 양상 을 보이는 것은 지형적 요인, 조위자료의 결측 등을 통해 향후 추가적인 분석이 필요한 것으로 사료된다.

Table 1. 연 고극조위 극치분석(Unit : cm)

구분		20년 빈도	50년 빈도	100년 빈도
G	172.5	178.3	185.7	193.1
L	171.4	175.2	179.5	182.4
G	229.8	233.8	239.0	244.2
L	229.5	232.1	235.1	237.2
G	348.0	360.3	376.0	391.8
L	344.3	351.8	360.5	366.3
G	104.0	110.5	118.9	127.3
L	102.9	107.5	113.0	116.7
	G L G G L G L L	10년 빈도 G 172.5 L 171.4 G 229.8 L 229.5 G 348.0 L 344.3 G 104.0 L 102.9	10년 빈도20년 빈도G172.5178.3L171.4175.2G229.8233.8L229.5232.1G348.0360.3L344.3351.8G104.0110.5L102.9107.5	10년 빈도 20년 빈도 50년 빈도 G 172.5 178.3 185.7 L 171.4 175.2 179.5 G 229.8 233.8 239.0 L 229.5 232.1 235.1 G 348.0 360.3 376.0 L 344.3 351.8 360.5 G 104.0 110.5 118.9 L 102.9 107.5 113.0

* ()는 각 조위관측소의 약최고고조위면

* G는 Gumbel-Chow 방법, L은 Log-Normal 방법

Table 2. 일최대조위편차 및 월최대조위편차 그치분석 (Unit : cm)

구	· 분	10년 빈도	20년 빈도	50년 빈도	100년 빈도	
부산	일편차	47.36	51.43	56.81	60.89	
	월편차	52.42	58.59	66.76	72.93	
가덕	일편차	90.42	98.75	109.78	118.11	
도	월편차	73.89	83.05	95.17	104.33	
통영	일편차	67.58	73.93	82.33	88.68	
	월편차	85.19	96.79	112.12	123.72	
울산	일편차	43.09	46.83	51.79	55.53	
	월편차	47.29	52.98	60.5	66.18	

2.2 해일모의 적용(태풍 MEAMI(0314))

본 논문에 사용된 MIKE21 모형 또한 조간대 모의 기법을 범람모의에 적용하는 대표적인 상용모형으 로 기존연구(문승록 등, 2006)에서 목포항 범람해석 에 적용한 바 있으며, 국외에서는 Bengal만에서 해 일과 범람을 동시에 모의한 연구(Madsen and Jakobsen, 2004)에 적용된 사례가 있다.

Fig. 2는 폭풍해일 수치모의에 적용한 대상영역으 로 MIKE 21 HD 모듈의 Nested grid 기법의 적용을 위해 격자간격을 1/3씩 감소시켜 Table 3(생략)과 같 이 8단계로 구성하여, 태풍 MEIMI(0314)의 해일고 검증은 Area_6(130m)에서, 마산만 일대 범람은 약 15m 의 격자크기에서 재현하였다.

(b) 세부역

Fig. 2. 폭풍해일 계산영역(Area_1 ~ Area_8)

연별 고극조위(Table 1), 일 최대 및 월최대 조위편 차(Table 2) 빈도분석 결과와 비교하면 태풍 MAEMI(0314)의 해일고는 100년 빈도 이상으로 나타 나고 있다. 그러나 남해동부해역에서 조위관측소는 관측개시가 가장 먼저 된 부산의 경우가 1956년으로, 현재(2008년)를 기준으로 관측기간이 60년으로 태풍 MAEMI(0314)가 100년 빈도 이상의 해일고를 유발했 다고 단언하기에는 무리가 있다.

3. 마산만 범람모의

MIKE 21을 활용한 기존연구(문승록 등, 2006)에서 는 계산시간을 단축하기 위해 대영역에 대한 큰 격자 망의 모의결과로부터 Nesting 격자망으로 구성된 관 심해역에 대한 외해 경계자료를 생성한 후 적용하는 Transfer boundary를 사용하였다. Transfer boundary는 경계에서의 수심 및 격자간격의 불일치로 정확한 계 산결과를 기대하기 어렵고, 특히 조석과 해일을 동시 에 모의할 경우 지형과 수심이 정확히 재현되지 않은 큰 격자망의 결과가 그대로 관심해역에 반영되므로 조석 전파시 위상이나 진폭의 오차가 크게 발생될 수 있어 실제 사상의 재현이 쉽지 않다. 반면 일체화된 격자구성을 통한 Nesting 격자망을 적용할 경우 경계 에서의 연속성이 유지되므로 크기가 다른 격자망간 상호연계된 수치모의가 가능하게 되고 계산결과의 정확도를 높일 수 있어 보다 정확한 사상 재현이 가능 하게 된다.

Fig. 3은 태풍 MAEMI(0314) 내습시 최대 해일고 분 포이며, Fig. 4는 마산만 범람을 모의결과이다. 모의 결과 당시 언론매체 및 범람흔적을 제시한 자료와 비 교해 유사한 경향을 나타내고 있다.

본 연구가 상용모형인 MIKE21의 조간대 모의 기 법을 범람모의에 확장·적용한 결과임에도 범람모형 을 이용한 기존연구(천재영 등, 2008) 결과와 유사한 모의결과를 얻을 수 있었다. 특히 짧은 CPU time으로 2시간 이내에 범람모의와 결과분석이 가능해 예측된 태풍 진로를 토대로 빠른 시간내에 다양한 범람예측 이 가능하고 이에 대한 신속한 대응 판단 및 대책수립 에 유용하게 활용될 수 있을 것으로 판단된다.

Fig. 3. 최대해일고 분포

(a) 범람 전

Fig. 4. 태풍 MAEMI(0314) 내습시 침수범위 및 침수고

4. 결론 및 발전방향

남해동부해역의 태풍 MAEMI(0314) 재현을 통해 마산해역에서 범람을 재현하고, 주요지점에서 발생 한 해일고를 조위편차 빈도분석 결과와 비교하였다. 수행한 본 연구에서 빈도분석 결과 태풍 MAEMI(0314)의 발생 해일고는 100년 빈도 이상으로 나타나고 있으나, 추가적인 분석이 필요하다. 조위관 측소의 관측개시로부터 관측기간 및 시간간격의 적 절성 등을 고려해야 할 것으로 사료된다. 또한 조위편 차 빈도분석의 경우 태풍에 의한 영향 뿐만아니라 계 절에 따른 수면변화, 겨울철 폭풍 등이 반영되어 있는 것으로 해일고 분석의 적절성 검토도 필요하다. MIKE 21의 마산만 적용을 통해 조간대 모의를 통한 범람모의시 적용성을 확인할 수 있었으며, 짧은 CPU time으로 빠른 시간내 범람예측이 가능하여 이에 대 한 신속한 대응판단 및 대책수립에 유용하게 활용될

수 있을 것으로 판단된다. 향후 범람시 육상의 표고 및 지형의 반영요건, 범람모의시 적합한 격자간격 등 의 추가검토를 진행할 예정이다.

감사의 글

본 연구는 건설교통부 지역특성화연구개발사업 의 연구비지원(C105E1020001-06E020200210)에 의 해 수행되었습니다.

참고문헌

- 문승록, 강태순, 남수용, 황준 (2007). 폭풍해일에 의 한 해안침수예상도 작성 시나리오 연구. 한국해안· 해양공학회지, 제19권 제5호, 492-501.
- 문승록, 박선중, 강주환, 윤종태 (2006). MIKE21 모형 을 이용한 목포해역 해일/범람모의. 한국해안·해양 공학회지, 제18권 제4호, 348-359.
- 박선중, 강주환, 박민원, 문승록 (2008). 내습 태풍의 특성변화에 따른 해일양상 고찰. 한국해안해양공 학회 춘계학술대회 발표논문집.
- 천재영, 이광호, 김지민, 김도삼 (2008). 태풍 매미 (0314호)에 의한 마산만 주변연안역에서의 범람해 석. 한국해양공학회지, 제22권 제3호, 8-17.
- DHI Water and Environment (1995). User guide and Reference manual. Pre and Post Processing Module.
- Madsen, H. and Jakobsen, F. (2004). Cyclone induced storm surge and flood forecasting in the northern Bay Bengal. Coastal Engineering, Vol.51, 277-296.
- McInnes, K.L., Walsh, K.J.E., Hubbert, G.D. and Beer, T. (2003). Impact of sea-level rise and storm surges on a coastal community. Natural Hazards, Vol.30, 187-207.