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1. INTRODUCTION
Wave effects must be taken carefully into 

account for the design of coastal structures 
such as breakwater, harbor, and moored-floater. 
Normally a number of possible wave 
conditions are examined in order to determine 
the design criteria. The wave conditions can be 
generated by a suitable mathematical model 
with help of numerical methods, which must 
be able to  describe wave deformations 
accurately in terms of shoaling, refraction, 
diffraction and reflection of waves propagating 
from deep water to shallow water. 

Boussinesq models are well known as the 
most accurate method for dealing with the 
propagation of non-linear shallow water waves 
near coastal regions. Boussinesq (1872) derived 
the equation by eliminating the vertical 
dependency and assuming 2( ) ( ) 1O Oμ ε= < , where 

0 0k hμ= , 0 0/a hε = . 0,ok a  and 0h  are the typical 
wave number, amplitude and the water depth 
in this order at a far upstream reference 
location. For waves propagating in intermediate 
or deep water, the modified Boussinesq 
equations with improved dispersion 
characteristics have been suggested. Madsen et 
al (1992) included higher-order terms with 
adjustable coefficients in the standard 
Boussinesq equation for even and variable 
bottoms. Agnon et al. (1999) formulated 
exactly the boundary conditions at the free 
surface and the bottom in an approximate 
solution of the Laplace equation, which is 
expressed by truncated series expansions. As a 

result, this formulation gives an accurate 
nonlinear dispersion relation up to 6kh = .

Above methods, however, do not provide an 
accurate vertical distribution of the velocity 
field. Madsen et al. (2002) suggested a new 
type of non-linear wave equations retaining the 
vertical velocity as an unknown. In this 
method, the Laplace solution is expanded from 
an arbitrary z-level rather than the still-water, 
which is quite different from the conventional 
Boussinesq equations. His fifth-order model can 
describe highly non-linear waves accurately up 
to 25kh = from the viewpoint of dispersion 
property, and up to 12kh = from the 
viewpoint of vertical velocity profile. Based on 
this approach, numerical simulations are carried 
out for waters of slowly-varying bathymetry in 
this work. Hereby numerical methods applicable 
for shoaling, refraction and also irregular wave 
propagation are rigorously implemented. The 
results thus obtained for wave profile, vertical 
structure of velocities and irregular wave 
propagation are to be used as input data for 
the motion analysis of floaters in shallow 
waters. 

2. BOUSSINESQ FORMULATION
It is assumed that the fluid is incompressible 

and inviscid with a free surface. A Cartesian 
coordinate system is introduced with x- and 
y-axis located on the still-water plane. Z-axis 
is pointed vertically upward. The kinematic and 
dynamic free-surface conditions are 
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where w η= + ∇V u% % % .                  (3)

Here ,u v=< >u% % %  and w%  are the 
horizontal and vertical velocities at the 
free-surface, respectively. g denotes the 
gravitational acceleration and ( / , / )x y∇ ≡ ∂ ∂ ∂ ∂  
the horizontal gradient operator. Accordingly, 
the kinematic bottom condition is expressed by

 
0.b bw h u+∇ ⋅ =                   (4)

 
The equations given in (1)-(3) represent a 

fully non-linear time-stepping problem. The 
vertical and horizontal velocities at an arbitrary 
z-level are related with those at the reference 
z-level by trigonometric functions, which satisfy 
the Laplace equation in the interior fluid 
domain. The accuracy of the trigonometric 
funtionals is enhanced greatly by applying the 
Padé expansions (Padé, 1892). Finally the 
velocities are expressed by 
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In equations (5) and (6), the quantities *û  
and *ŵ  are the so-called utility variables which 
are introduced for the approximate solution of 
the Laplace equation. It is known that an 
optimal velocity distribution can be obtained 
near ˆ / 2z h= −  (Madsen et al, 2002). This 
choice is kept also in this paper. With this 
Boussinesq formulation, the velocity 
components at the free-surface and the bottom 
can be obtained by substituting z η=  and 
z h= −  ,respectively. By inserting equations (5) 
and (6) into the bottom boundary condition, 
equation(4), we have a relation for the utility 
velocities *û  and *ŵ . 
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where ˆ( )h zγ = + . 

Here, the coefficients of the bottom slope 
terms are modified in order to satisfy the  
linear shoaling gradient numerically. The 
optimized coefficients are found to be 

2 0.357739c = , 4 0.00663819c = , 3 0.0753019s = ,
5

5 6.31532 10s −=− ×  for 30kh ≤  (Madsen et al., 
2002). Combining V%  in equation (3) and 
the bottom boundary condition (8), the 
following linear system is established.
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Here, the subscripts x  and y  denote the 
partial differentiation with respect to each 
variable. This system has a number of 
operators which contain up to either 
fourth-order or fifth-order mixed derivatives 
related with equations (5) and (6). The utility 
velocity components *û  and *ŵ  can be solved 
from equation (9) in terms of u%  and η . After 
having solved the utility variables, the vertical 
velocity at the free-surface, ŵ , can be 
computed from Boussinesq formulation (6), i.e.

 
* * *

1 11 12ˆ ˆ ˆ ,w A w B u B v= − −%       (10)
 
which is used to close the governing 

equation. Finally the problem turns out to be a 
time-stepping problem for the non-linear 
free-surface boundary conditions, equations (1) 
and (2).

3. MODEL VERIFICATION
3.1 Linear Wave Shoaling

The linear shoaling equation is defined by 
(Madsen and Sorensen, 1992).

                              

 
x xA h

A h
α= − (11)          

 
The shoaling gradient,α , can be derived by 

using energy flux conservation combined with 
Stokes linear theory,
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To exemplify the present method, the 
following test case is considered herein. At the 
seaward boundary, the water depth is 13m. 
The bottom is flat for the first 10m from the 
seaward boundary, while it has a constant 
slope of 1/50 from 10m to 600m from the 
boundary. From 600m to 650m, the bottom is 
flat again with a water depth of 1.2m. All 
non-linear terms are switched off in this 
particular simulation, the grid size and time 
step are chosen to be 1.0m and 0.08s, 
respectively.

The computed surface elevation is shown in 
Fig.1, while Fig.2 shows the comparison 
between the computed maximum elevation and 
the shoaling curve obtained from equation (12) 
with the exact shoaling gradient (11). The 
agreement is quite well over all locations. 
Based on this simulation, it is concluded that 
the accuracy of the present numerical model is 
acceptable for mild wave shoaling. 

3.2 Nonlinear Wave Shoaling
Whalin’s experiment (1971) is often cited in  

literature to validate numerical wave models 
involving both the refraction and the shoaling. 
The topography is given by equation (13) and 
shown in Fig.3, i.e. the shoaling region looks 
like a concave lens. 

0.4572 0 10.67
1( , ) 0.4572 (10.67 ) 10.67 18.29
25

0.1524

if x G

h x y G x if G x G

otherwise

≤ ≤ −⎧
⎪⎪= + − − − ≤ ≤ −⎨
⎪
⎪⎩  

(13)

, where ( ) (6.096 )G y y y= − .

The gradient of h  is calculated analytically 
when building the bottom boundary condition 
(4). Because the bathymetry is symmetrical 
about centerline 3.048y m= , only the half of 
the domain is considered. For waves of T=1s , 
it corresponds to kh=1.913   and  ka=0.0816 . 
The mesh with 40 nodes per wave length is 
used and the time step is fixed to be 

/ 40t TΔ = . Almost identical results for the  1st 

order harmonic are obtained as shown in Fig.4. 
These are the relative amplitudes of harmonics 
along the center line at 3.048y m= . 
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Fig. 1. Calculated Free-surface Elevation
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Fig. 2. Comparison of Calculated Maximum 
Elevation with Exact Linear Solution

Comparisons between the numerical and 
experimental results are quite good. The 
numerical reflection is not observed even for 
second harmonics because we use 40 nodes for 
the primary wave, which correspond to 20 
nodes for the second harmonic waves. The 
wave focusing can be seen in Fig.5, which 
implies the capability of the Boussinesq 
formulation and the present method. 

 
3.3 Irregular Wave Simulation

Irregular waves in a water of constant depth 
are simulated to investigate the generation and 
absorption characteristics of irregular waves in 
shallow water. It is to note that the peak 
frequency of the simulated wave spectrum is in 
the shallow water region ( 1.0kh ≤ ). The 
irregular waves are imposed at the inlet 
boundary using JONSWAP spectrum which has 
the peak period of 12s and the significant 
wave height of 3m. Fig. 6 shows the generated 
wave spectrum. Two spectra match each other 
quite well with relative error less than 1% in 
the sense of the total energy. Based on this 
result, it may be concluded that there is not 
significant numerical dissipation in the interior 
domain and the absorption layer works well 
for waves of practically all frequencies. 

5. CONCLUSION
A high-order Boussinesq equation based on 

the Padé expansion is modeled to simulate the 
fully non-linear and highly dispersive waves.
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Fig. 3. Bottom Topology for Nonlinear Wave 
Shoaling
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Fig. 4. Computed and Measured Harmonic 
Amplitudes for Whalin’s Experiment 

Fig. 5. Snap Shot of Simulated Nonlinear Surface 
Elevation

Fig. 6. Comparison Between Input Wave Spectrum 
and Generated Wave Spectrum

 The formulation is expressed by the 
velocity field in terms of finite series 
expansions of velocity components at an 
arbitrary z-level. This method makes possible 
to extend the applicability of the Boussinesq 
equations to the deeper water region and it 
turns out for the dispersion relation to be 
accurate as high as 25kh = ,while for the 

vertical structure of the velocity field as high 
as 12kh = . 

The present numerical result compares quite 
well with the corresponding experiment (or 
exact solution) for several cases considered 
herein. The simulation of linear and nonlinear 
shoaling shows the accurate shoaling 
characteristics. The simulation for the irregular 
waves in shallow water regions shows good 
correspondence of the total energy between the 
input and generated wave spectrum.
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