깊이가 유한한 투수성 바닥 위에서의 파의 감쇠

Wave attenuation over a porous bottom of finite depth

<u>도기덕1</u>, 서경덕2, 김건우3

Ki Deok Do¹, Kyung-Duck Suh² and Gunwoo Kim³

1.서 론

해저면에 투수층이 존재하는 경우의 파의 감쇠 율은 Reid와 Kajiura(1957)에 의하여 제시되었 다. 그러나 Reid와 Kajiura는 해저면에 무한한 깊이를 가진 투수층이 존재할 경우의 파의 감쇠율 을 유도하였다. 이런 이유로 인공적으로 투수층을 설치하여 파의 감쇠를 유도하는 인공리프나 방파 제 마운드와 같이 유한한 깊이를 가진 투수층에 대해서는 적용이 불가능하다. 본 연구에서는 Reid와 Kajiura의 연구를 확장하여 유한한 깊이 를 가진 투수층이 존재하는 경우에의 파의 감쇠율 을 제시한다. 그리고 감쇠율을 완경사 방정식에 적용하여, 해저면에 유한한 깊이의 투수층이 존재 할 경우의 파의 거동을 2차원적으로 해석하였다. Flaten과 Rygg(1991)의 적분식 모형과 비교하여 모형을 검증하였다.

제17권, pp. Fig. 1. Definition sketch of porous bottom of finite depth

2. 파의 감쇠율 유도

Fig 1과 같이 투수층의 깊이가 *d*이고, 수심이 *h*인 경우에 투수층 내에서의 흐름은 다음과 같은 연속방정식을 만족한다.

$$\nabla \cdot \vec{u} = 0 \tag{1}$$

여기서, ▽는 3차원 미분 연산자이며 유속 *u*는 투수층 내에서 다음과 같은 Darcy의 법칙을 따른 다.

$$\vec{u} = -\frac{K}{\mu} \nabla p_2 \tag{2}$$

여기서,K는 투수계수, μ 는 점성계수, p_2 는 투수 층 내에서의 압력이다. 식 (1), (2)로부터 p_2 는 다음의 Laplace 식을 만족한다.

$$\nabla^2 p_2 = 0 \tag{3}$$

유체영역의 속도포텐셜 ϕ_1 과 투수층에서의 압력 p_2 는 바닥면에서의 경계조건과 파의 주기성을 고 려하여 다음과 같이 가정할 수 있다.

$$\phi_1(x,z) = [A \cosh k(h+z) + B \sinh k(h+z)]e^{i(kx-\sigma t)}$$
(4)

$$p_2(x,t) = [C \cosh h(h+z+d) + D \sinh h(h+z+d)]e^{i(kx-\sigma t)}$$
(5)

여기서, k는 파수, σ는 각주파수이다. 경계조건

¹ 발표자: 서울대학교 건설환경공학부 석사과정

² 서울대학교 건설환경공학부 교수

³ 현대건설 쿠웨이트정유공사패키지 No.5 서울사무소 대리

과 정합조건을 사용하면 식 (4)와 (5)의 *A*,*B*,*C*, *D*를 결정할 수 있으며, 또한 분산관계식을 구할 수 있다. 바닥 경계조건은 다음과 같다.

$$w_2 = 0, \qquad at \quad z = -h - d \tag{6}$$

유체와 투수층에서의 경계(z = - h)에서 압력과 유속이 연속이므로 각각 동역학적 정합조건과 운 동학적 정합조건은 다음과 같다.

$$\rho \frac{\partial \phi_1}{\partial t} = p_2, \quad at \quad z = -h \tag{7}$$

$$-\frac{\partial\phi_1}{\partial z} = -\frac{K}{\mu}\frac{\partial p_2}{\partial z}, \quad at \quad z = -h \tag{8}$$

그리고, 자유수면에서 선형화된 동역학적 경계조 건과 운동학적 경계조건은 각각 다음과 같다.

$$\frac{\partial \phi_1}{\partial t} = g\eta, \quad at \quad z = 0 \tag{9}$$

$$\frac{\partial \eta}{\partial t} = -\frac{\partial \phi_1}{\partial z}, \quad at \quad z = 0 \tag{10}$$

이상의 식을 정리하면, 다음과 같은 분산관계식 을 구할 수 있다.

$$\sigma^{2} - gk \tanh kh = -iR(gk - \sigma^{2} \tanh kh) \tanh kd$$
(11)

여기서, $R = \sigma K/\nu$ 이고, ν 는 동점성 계수이다. 파수 $k = k_r + ik_i$ 를 식 (11)에 대입하고, $(Rk_i, (k_i)^2$, k^ih) \ll 1을 가정하면, 실수부와 허수부를 각각 다음과 같이 정리할 수 있다.

$$\sigma^2 = gk_r \tanh k_r h \tag{12}$$

$$k_i = \frac{2\pi k_r}{2k_r h + \sinh 2k_r h} \tanh k_r d \tag{13}$$

여기서, k_r 은 진행파의 파수이고, k_i 는 파의 감 쇠율이다. $d = \infty$ 인 경우에 식 (13)은 Reid와 Kajiura(1957)의 식과 같다. 투수층의 깊이와 상 대수심에 따른 감쇠율을 Fig 2에 나타내었다. 상 대수심이 얕은 경우에 투수층의 깊이에 의한 효 과가 현저히 높은 것을 알 수 있다.

Fig. 2. Dimensionless damping coefficient versus relative depth

3. 완경사 방정식에 적용

Berkhoff(1972)는 파의 굴절과 회절, 그리고 천수를 동시에 고려할 수 있는 완경사 방정식을 제시하였다. Booij(1981)는 완경사 방정식에 파 의 쇄파현상을 고려한 식을 다음과 같이 제시하 였다. ·

$$\nabla \bullet (CC_g \nabla \phi) + (CC_g k^2 + i C_g \sigma \gamma) \phi = 0 \quad (14)$$

여기서, *C*는 파속, *C_g*는 군속도이며, *γ*는 수심 에 따른 파의 쇄파로 인한 파의 감쇠율을 의미한 다. 본 연구에서는 Booij가 제시한 식 (14)에 *γ* 대신 식 (13)에서 구한 *k_i를* 사용하여, 투수층이 존재하는 경우의 파의 감쇠현상을 해석하였다. 이를 식으로 나타내면 다음과 같다.

$$\nabla \bullet (CC_q \nabla \phi) + (CC_g k^2 + i C_g \sigma k_i) \phi = 0 \quad (15)$$

식 (15)는 바닥경사가 완만한 지형에서만 적용 이 가능하다. 그러므로 본 연구에서는 Chandrase kra와 Cheung(1997)이 제시한 확장형 완경사 방 정식을 사용하여, 급경사에서도 적용이 가능하도 록 하였다. 식은 다음과 같은 형태이다.

$$\nabla \bullet (CC_g \nabla \phi) + (CC_g k^2 + i C_g \sigma k_i) \phi$$
$$+ [f_1(kh) + f_2(kh)] \phi = 0$$
(16)

여기서,
$$f_1(kh)$$
와 $f_2(kh)$ 는 다음과 같다.

$f_1(kh) =$	
$-4kh\cosh(kh)+\sinh(3kh)+\sinh(kh)+8(kh)^2\sinh(kh)$	h)
$8\cosh^3(kh)[2kh+\sinh(2kh)]$	
$-\frac{kh}{\tanh(kh)}$	
$2 \cosh^2(kh)$	
$f_{2}(kh) = \frac{\operatorname{sech}^{2}(kh)}{\operatorname{sech}^{2}(kh)}$	
$6[2kh + \sinh(2kh)]^3$	
$\times (8(kh)^4 + 16(kh)^3 \sinh(2kh) - 9\sinh^2(2kh)\cosh(2kh))$	
$+12(kh)[1+2\sinh^4(kh)][kh+\sinh(2kh)])$	
	(17)

4. 수치해석

Flaten과 Rygg(1991)은 Green 함수를 이용해 서 지배방정식(1),(3)과 경계조건 (6)-(10)을 직접 해석하는 적분식모형을 제시한 바 있다. 본 연구 에서 유도한 에너지 감쇠율을 고려한 확장형 완경 사 방정식의 결과를 Flaten과 Rygg의 결과와 비 교하여 검증하였다.

4.1 둔덕지형

둔덕지형의 실험영역은 Fig 3과 같으며, 바닥지 형은 식 (18)로 표현된다.

Fig 3. Definition sketch of the shoal

$$h = \begin{cases} h_0 & x < 0 \\ h_0 - b - bsin(lx - \pi/2) & 0 < x < 0.5\lambda_s \\ h_0 - 2b & 0.5\lambda_s < x < W - 0.5\lambda_s \\ h_0 - b - bsin(lx - \pi/2) & W - 0.5\lambda_s < x < W \\ h_0 & x > W \end{cases}$$

(18)

여기서, $\lambda_s = 2\pi/l$, W는 둔덕의 길이이다. 수치 계산에 사용된 값은 $h_0 = 10m$, $\lambda_s = 50m$, b = 2m, $W = 6\lambda_s = 300m$ 이며, 투수계수는 0.0, 1.0×10^{-8} , 4.0×10^{-8} 로 두었다. 여기서 λ 는 h_0 에서의 파장이 며, 투과율의 제곱값을 Fig 4에 도시하였다. Fig 4을 보면, 감쇠율 k_i 를 사용한 수치해석 결과와 Flaten과 Rygg(1991)이 제시한 적분식 모형의 결과가 거의 일치함을 알 수 있었다.

Fi.g. 4. The square of the norm of the transmission coefficient for periodic waves over a shoal

(a) K=0.0, (b) $K=1.0\times10^{-8}$, (c) $K=4.0\times10^{-8}$

4.2 사련지형

사련지형의 실험영역은 Fig 5와 같으며, 바닥지 형은 식 (19)로 표현된다.

Fig. 5. Definition sketch of the ripple

$$h = h_0 - b - b \sin(lx - \pi/2) \qquad 0 < x < N \lambda_s \qquad (19)$$

여기서, $\lambda_s = 2\pi/l$, N 은 사련의 개수이다. 수치 산에 사용된 값은 $h_0 = 10m$, $\lambda_s = 50m$, b = 1m, N=6이며, 투수계수는 0.0, 1.0×10^{-8} , 4.0×10^{-8} 로 두었다. 여기서 k는 파수이며, 투과율의 제곱 값을 Fig 6에 도시하였다. Fig 6을 보면, 사련의 경우에도 Flaten과 Rygg(1991)이 제시한 적분식 모형의 결과와 거의 일치함을 알 수 있었다.

Fig. 6. The square of the norm of the transmission coefficient for periodic waves over a ripple patch

(a) K=0.0, (b) $K=1.0\times10^{-8}$, (c) $K=4.0\times10^{-8}$

5.결 론

본 연구에서는 Reid와 Kajiura(1957)의 연구를 확장하여, 유한한 깊이의 투수층 위를 진행하는 파의 감쇠율을 유도하였다. 그리고 파의 감쇠율 을 완경사 방정식에 적용하여, 투수층 둔덕과 사 련 위를 진행파는 파에 대한 수치 실험을 수행하 였다. 그리고 이 결과를 Flaten과 Rygg(1991)의 적분식 방법을 통해 얻은 수치 결과와 비교하여 거의 일치하는 결과를 얻을 수 있었다. 향후 연 구에서는 수리모형실험을 통해 유한한 깊이의 투 수층에서의 파의 감쇠율을 검증하고자 한다.

본 연구에서 유도한 파의 감쇠율은 투수층의 재질이 같은 한 개의 층이 해저면에 존재할 경우 에만 적용이 가능하다. 그러나 실제 대부분의 방 파제 마운드와 같은 사석 방파제에서는 투수층이 여러 개의 층으로 이루어져 있다. 그러므로 향후 연구에서는 투수계수가 서로 다른 2개의 층이 해 저면에 존재할 경우에의 파의 감쇠율을 유도하고 이를 다층으로 확장할 필요가 있다. 이를 통해 투수계수가 다른 여러 개의 층이 이루어져 있을 경우에의 파의 거동을 분석하여 잠제형 방파제에 서의 파의 차단효과를 더 크게 할 수 있는 지를 확인해야 할 것이다.

감사의 글

본 논문은 국토해양부 및 한국해양수산진흥원 지 원과제인 '항만구조물 신뢰성 설계법 개발' 연구과제 (PM48400)와 서울대학교 SIR BK21(안전하고 지속가 능한 사회기반건설)사업단의 지원 하에 연구가 수행 되었습니다.

참고문헌

- Berkhoff, J.C.W. (1972). Computation of combined refraction-diffraction. Proceeding of 13th Intl. Conf. of Coastal Engrg., Vancouver, Canada, 471-490.
- Booij, N (1981). Gravity waves on water with non-uniform depth and current. Ph.D. Dissertation, Delft University of Tech, Delft, Netherlands.
- Chandrasekera, C.N and Cheung, K.F (1997). Extended linear refraction-diffraction model. J. Wtrwy., Port, Coast. and Oc.Engrg., Asce, 123(5), 280-296.
- Flaten, G. and Rygg, O.B (1991). Dispersive shallow water waves over a porous sea bed. Coastal Engineering., 15(4), 347-369.
- Reid, R.O and Kajiura, K. (1957). On the damping of gravity waves over a permeable seabed. Trans. Am. Geophys. Union., 38.