급변수심에 적용 가능한 Nwogu 꼴의 Boussinesq 방정식 Nwogu-type Boussinesq Equations for Rapidly Varying Topography

<u>**김건우!**</u>, 이창훈2, 서경덕3

Gunwoo Kim¹, Changhoon Lee² and Kyung Duck Suh³

1.서 론

비선형 불규칙과를 해석할 수 있는 Boussinesq 방정식은 Peregrine(1967)이 변수심의 경우에 유 도하였으나, 수심이 파장에 비해 상대적으로 작은 천해에서만 선형의 분산관계를 만족하고, 심해에 서 파랑의 거동은 제대로 예측하지 못하는 단점이 있었다. 이러한 단점을 극복하기 위하여 1990년 대부터 Boussinesq 식을 심해로 확장하는 연구가 활발히 이루어졌다(Madsen and Sørensen(1992); Nwogu(1993); Gobbi and Kirby (1999)). 그러나, 급경사에서 Boussinesq 방정식의 정확도를 개선 하는 연구는 제대로 이루어지지 않았다.

Boussinesq 방정식은 수평방향으로는 대표파장 (k_0^{-1}), 수직방향으로 대표수심(h_0)으로 무차원 화하여 작은 차수에서 유도된 식이다. 따라서, 바 닥의 경사가 $O(\nabla h) = O(k_0h_0) \ll 1$ 이 되어 완 만하다는 가정이 나올 수밖에 없었다(Peregrine, 1972). 이창훈 등(2003)은 Wei 등(1995)의 확장 형 Boussinesq 방정식이 바닥경사의 제곱항을 무 시하고 유도되었으며, Booij (1983)의 경사면 위 를 진행하는 파의 수치실험을 통해서 1:1 이상의 경사에서는 부정확한 반사율이 나옴을 확인하였 다. 최근 김건우 등(2007)은 Madsen과 Sørensen (1992)의 유도과정에서 생략된 바닥의 곡률항과 바닥경사의 제곱항을 온전히 포함한 식을 유도하 여 이전의 식보다 급한 경사면에서도 정확한 파랑 변형이 재현됨을 확인하였다. Gobbi and Kirby(1999)는 바닥경사의 제곱항을 포함한 항($\{1 + \mu^2 (\nabla h)^2\}^{-1}$)을 $k_0 h_0$ 에 대하여 이항전개(binomial expansion)하지 않고, 변수로 취급하여 $O(\mu^4)$ 항까지 포함한 Boussinesq 방정 식을 유도하였다. 본 연구에서는 Nwogu(1993)의 식에 Gobbi and Kirby의 방법을 도입하여 바닥경 사의 제곱항을 포함한 식을 유도하여 급경사에서 더 정확한 식을 제안하였다. 본 연구에서 유도된 확장형 Boussinesq 방정식과 Nwogu의 식을 Booij(1983)와 Suh(1999)의 경사면 수치실험에 적용하여 본 모형을 검증하였다.

2. 확장형 Boussinesq 방정식의 개선

2.1 지배방정식과 경계조건의 무차원화

Boussinesq 방정식은 천해파라는 가정 하에 독 립변수와 종속변수를 다음과 같이 무차원화하여 유도된다.

$$(x', y') = (k_0 x, k_0 y), \quad z' = z/h_0, t' = \omega_0 t = \sqrt{gh_0} k_0 t, \quad h' = h/h_0, \quad \eta' = \eta/a_0, \phi' = \left(\frac{k_0 h_0}{a_0 \sqrt{gh_0}}\right) \phi$$
 (1)

위 식에서 prime이 붙은 항은 무차원화 된 값이 다. 아래 첨자 0이 붙은 항은 그 변수의 대표 값 을 의미한다. k는 파수, w는 각주파수, g는 중 력가속도이고, a는 수면변위의 진폭이다. 종속변

¹ 발표자: 현대건설 쿠웨이트정유공사 패키지 No. 5 서울사무소 대리

² 세종대학교 토목환경공학과 부교수

³ 서울대학교 건설환경공학부 교수

수는 수면변위 η와 속도포텐셜 φ이다. 비압축성 유체의 비회전류에 대한 지배방정식인 Laplace 방정식은 다음과 같다.

$$abla'^2 \phi'^2 + \frac{1}{\mu^2} \frac{\partial^2 \phi'}{\partial z'^2} = 0, \quad -h' < z' < \delta \eta'$$
 (2)
그리고, 바닥 및 수면에서 경계조건은 다음과 같
다.

$$\nabla' h' \cdot \nabla' \phi' + \frac{1}{\mu^2} \frac{\partial \phi'}{\partial z'} = 0, \quad z' = -h' \quad (3)$$

$$\eta' + \frac{\partial \phi'}{\partial t'} + \frac{\delta}{2} \left[|\nabla' \phi'|^2 + \frac{1}{\mu^2} \left(\frac{\partial \phi'}{\partial z'} \right)^2 \right] = 0, \quad z' = \delta \eta' \quad (4)$$

 $\frac{\partial \eta'}{\partial t'} + \delta \nabla' \eta' \cdot \nabla' \phi' - \frac{1}{\mu^2} \frac{\partial \phi'}{\partial z'} = 0, \ z' = \delta \eta'(5)$

위 식에서, $\mu = k_0 h_0$ 와 $\delta = a_0 / h_0$ 는 각각 상대수 심과 비선형성을 의미하는 매개변수이다.

2.2 Nwogu(1993)의 Boussinesq 방정식의 개선

속도포텐셜을 바닥에서부터의 멱급수로 표현하 면 다음과 같다.

$$\phi' = \sum_{n=0}^{\infty} (z'+h')^n \phi'_n(x',y',z',t')$$
(6)

속도포텐셜의 공간미분항 $\nabla' \phi'$ 와 $\partial \phi' / \partial z'$ 를 바 닥경계조건식 (3)에 대입하면 ϕ_1 과 ϕ_0 의 관계를 다음과 같이 얻을 수 있다.

$$\phi'_{1} = -\mu^{2} \frac{\nabla' h' \cdot \nabla' \phi'}{1 + \mu^{2} |\nabla' h'|^{2}}$$
(7)

유도 과정에서 모든 종속변수를 $O(\mu^2)$ 의 정도까 지만 구하므로, Wei et al. (1995)은 바닥경사의 제곱항을 $|\nabla h|^2 = \mu^2 |\nabla' h'|^2 = O(\mu^2)$ 으로 가정 하여 무시하였다.

$$\phi'_{1} = -\mu^{2} \frac{\nabla' h' \cdot \nabla' \phi'}{1 + \mu^{2} |\nabla' h'|^{2}}$$

$$= -\mu^{2} \nabla' h' \cdot \nabla' \phi' + O(\mu^{4})$$
(8)

식 (8)로부터 유도한 Boussinesq 방정식은 바닥 경사의 제곱항을 고려하지 않으므로, Nwogu의 식 은 급경사에서 큰 오차를 보인다(이창훈 등, 2003; 김건우 등, 2007). 본 연구에서는 Gobbi and Kirby (1999)의 방법과 같이, 바닥경사의 제 곱항을 포함한 변수 *S*'를 아래와 같이 정의하여 기존의 유도과정에서 생략된 바닥 경사의 제곱항 을 고려한 새로운 식을 유도하였다.

$$S' = \frac{1}{1 + \mu^2 |\nabla' h'|^2}$$
(9)

이 때 식 (7)은 다음과 같이 표현된다.

$$\phi'_{1} = -\mu^{2} S' \nabla' h' \cdot \nabla' \phi'_{0} + O(\mu^{4})$$
(10)

속도포텐셜을 다음과 같이 나타낼 수 있다.

$$\phi' = \phi'_{0} - \mu^{2} S'(z' + h') \nabla' h' \cdot \nabla' \phi'_{0} \qquad (11)$$
$$- \mu^{2} \frac{S'}{2} (z' + h')^{2} \nabla'^{2} \phi'_{0}$$

 $z' = z'_{\alpha}$ 위치에서의 속도포텐셜을 ϕ'_{α} 라고 정의 하면 ϕ' 를 다음과 같이 ϕ'_{α} 에 대해서 표현할 수 있다.

$$\phi' = \phi'_{\alpha} + \mu^2 S'(z'_{\alpha} - z') \nabla' \cdot (h' \nabla' \phi'_{\alpha}) \quad (12)$$
$$+ \mu^2 \frac{S'}{2} (z'^2_{\alpha} - z'^2) \nabla'^2 \phi'_{\alpha}$$

식 (12)로 표현되는 속도포텐셜의 공간 미분 항 인 $\nabla' \phi'$, $\partial \phi' / \partial z'$ 와 시간 미분 항 $\partial \phi' / \partial t'$ 를 식 (2)에 대입하고 바닥(z' = -h')에서부터 수면 ($z' = \delta \eta'$)까지 공간 적분을 취하고 Leibnitz 법 칙을 사용하면 수평 공간 좌표로 표현된 연속방정 식을 얻게 된다. $z' = z'_{\alpha}$ 에서의 수평방향 유속을 $u'_{\alpha} = \nabla' \phi'|_{z' = z'_{\alpha}}$ 로 정의하면 연속방정식은 다음 과 같다.

$$\frac{\partial \eta'}{\partial t'} + \nabla' \cdot \boldsymbol{M} = 0 \tag{13}$$

$$\begin{split} \boldsymbol{M} &= \int_{-h'}^{\delta\eta} \nabla' \phi' dz \qquad .\\ &= (\delta\eta' + h') \left\langle \boldsymbol{u'}_{\boldsymbol{a}} + \mu^2 \left\{ \left[z'_{\alpha} + \frac{h' - \delta\eta'}{2} \right] \nabla' [S' \nabla' \cdot (h' \boldsymbol{u'}_{\boldsymbol{a}})] \right. \\ &+ \left(\frac{z'_{\alpha}^2}{2} - \frac{h'^2 - h' \delta\eta' + \delta^2 \eta'^2}{6} \right) \nabla' [S' (\nabla' \cdot \boldsymbol{u'}_{\boldsymbol{a}})] \right\} \right\rangle$$

$$(14)$$

식 (12)로 표현되는 속도포텐셜의 공간 미분항인 $\partial^2 \phi' / \partial z'^2$ 와 $\nabla'^2 \phi' \in Bernoulli$ 식 (5)에 대입 하고 $u'_{\alpha} = \nabla' \phi'|_{z'=z'_{\alpha}}$ 의 관계를 이용하면 다음 식을 얻게 된다.

식 (13)와 (15)는 바닥경사의 제곱항을 고려한 확장형 Boussinesq 식이다. S' = 1이면, 즉 바닥 경사의 제곱항을 무시하면, Wei 등 (1995)이 유 도한 강 비선형 확장형 Boussinesq 방정식이 된 다. 비선형 매개변수가 포함된 항 가운데 $O(\delta\mu^2)$ 보다 고차의 항을 무시하면 Nwogu (1993)의 약 비선형 확장형 Boussinesq 방정식에 바닥경사의 제곱항을 포함한 식이 되며, 차원을 가진 변수로 표현하면 다음과 같다.

$$\frac{\partial \eta}{\partial t} + \nabla \cdot \left[(h+\eta) \boldsymbol{u}_{\boldsymbol{\alpha}} \right] + \nabla \cdot \left\{ \left(\frac{z_{\alpha}^2}{2} - \frac{h^2}{6} \right) h \nabla (S \nabla \cdot \boldsymbol{u}_{\boldsymbol{\alpha}}) + \left(z_{\alpha} + \frac{h}{2} \right) h \nabla \left[S \nabla \cdot (h \boldsymbol{u}_{\boldsymbol{\alpha}}) \right] \right\} =$$

$$(18)$$

$$\frac{\partial \boldsymbol{u}_{\boldsymbol{\alpha}}}{\partial t} + (\boldsymbol{u}_{\boldsymbol{\alpha}} \cdot \nabla) \boldsymbol{u}_{\boldsymbol{\alpha}} + g \nabla \eta + z_{\boldsymbol{\alpha}} \bigg\{ \frac{z_{\boldsymbol{\alpha}}}{2} \nabla \bigg(S \nabla \cdot \frac{\partial \boldsymbol{u}_{\boldsymbol{\alpha}}}{\partial t} \bigg) + \nabla \bigg[S \nabla \cdot \bigg(h \frac{\partial \boldsymbol{u}_{\boldsymbol{\alpha}}}{\partial t} \bigg) \bigg] \bigg\} = 0$$
(19)

여기서, S=1/{1+(▽h)²}이다.

식 (18), (19)에는 *S*, *∇S*, *∇*²*S*항이 포함되 어 있다.*S*에 (*∇h*)²를 포함하기 때문에, *∇S*, *∇*²*S*에는 높은 차수의 수심미분항이 나타나며, 이는 본 유도과정에서 *O*(*∇h*) = µ의 가정을 하 지 않았기 때문에 생략되지 않은 항이다. 이 고차 미분항은 선형파에 대한 확장형 완경사방정식에서 는 나타나지 않았으며, 각 항의 상대적인 크기와 중요도가 명확하지 않다. 따라서, 식 (18)과 (19)에서 수심의 고차미분항을 부분적으로 포함 하거나, 전혀 고려하지 않는 식에 대해서도 수치 실험을 수행하여 정확도를 비교하고자 한다.

앞서 유도한 식 (18), (19)를 Model 1이라 하 고, 연속방정식과 운동량방정식에 S만 고려하고, ▽S= ▽²S=0인 식은 Model 2라고 한다. 그리 고, 연속방정식에 아래의 식과 같이 S와 ▽S를 부분적으로 포함하고, 운동량 방정식에서는 S만 포함한 식은 Model 3이라고 한다.

$$\begin{split} & \frac{\partial \eta}{\partial t} + \nabla \cdot \left[(h+\eta) \boldsymbol{u}_{\boldsymbol{\alpha}} \right] \\ & + \nabla \cdot \left\{ \left(\frac{z_{\alpha}^2}{2} - \frac{h^2}{6} \right) hS \nabla (\nabla \cdot \boldsymbol{u}_{\boldsymbol{\alpha}}) + \left(z_{\alpha} + \frac{h}{2} \right) hS \nabla \left[\nabla \cdot \left(h \boldsymbol{u}_{\boldsymbol{\alpha}} \right) \right] \right\} = 0 \end{split}$$

$$(20)$$

마지막으로, 연속방정식에 식 (20)과 같이 *S*와 ▽*S*를 부분적으로 포함하고, 운동량 방정식에 *S* 와 ▽*S*를 모두 포함한 식(19)을 사용한 경우를 Model 4라고 한다.

3. 수치해석

3.1 Booij의 경사면 위를 전파하는 파의 반사

Booij(1983)의 경사면 실험은 수평 1차원의 경 우 경사면 위로 파랑이 전파하는 현상을 모의하여 경사도에 따른 파랑의 반사율을 비교한다. 수심이 $h_1 = 0.6m$ 와 $h_2 = 0.2m$ 인 두 수평면 사이에 경사면을 두고 주기 T = 2s의 선형파가 0.6m 수 심에서 출발한다.

Fig. 1에 계산영역을 도시하였다. Fig. 2에 본
0 연구에서 유도된 식(Model 1~4)을 사용한 해와 Nwogu 식의 해, 유한요소법을 사용한 Laplace방 정식의 해를 함께 비교하였다. 이창훈 등(2003) 에서 확인한 바와 같이 Nwogu의 식은 가장 경사 가 급한 경우에(b = 0.1cm) 반사율이 0.55이고, 이는 유한요소해 0.23의 두 배가 넘는다. 본 연 구에서 유도된 식 가운데 Model 2는 최대 0.86의 반사율을 나타냈으며, 가장 부정확한 결과를 보였
다. Model 1과 Model 4는 기존의 Nwogu의 식보다 는 개선된 결과를 보였고, 연속방정식에만 ▽S를 부분적으로 고려한 Model 3은 유한요소해와 거의 일치하는 반사율을 재현하였다.

Fig. 1. computational domain for Booij's slope

Fig. 2. reflection coefficients vs width of Booij's slope

3.2 Suh의 경사면 위를 전파하는 파의 반사 Booij의 경사면은 경사면에서 바닥경사가 일정

하며 경사면의 양 끝 지점에서만 바닥곡률의 효과 가 있다. 경사의 효과와 곡률의 효과를 동시에 평 가하기 위해 Suh (1999)는 경사의 양끝에서 경사 가 연속적으로 바뀌는 경우에 확장형 완경사방정 식을 검증한 바 있다. 이 경우에 경사면의 수심은 다음과 같다.

 $h(x) = 0.5(h_1 + h_2) - 0.5(h_1 - h_2) \tanh p(x)$ (19)

여기서, h_1 과 h_2 는 각각 0.6m와 0.2m이고, p(x)는 다음과 같다.

$$p(x) = 3\pi \left(\frac{x}{b} - \frac{1}{2}\right) \tag{20}$$

여기서, b는 수심이 바뀌는 경사면의 폭이다.

Fig. 3. computational domain for Suh's slope

Fig. 4. reflection coefficients vs width of Suh's slope

Fig. 3과 4에 계산영역과 해석결과를 비교하였 다. 앞서 Booij의 경사면 실험과 마찬가지로, Nwogu의 식과 Model 2는 급경사에서 큰 오차를 보였으며, Model 3는 유한요소해와 거의 일치하 는 반사율을 보였다.

4. 결 론

Nwogu(1993)의 확장형 Boussinesq 방정식에 바

닥경사의 제곱항을 포함하는 변수(s)를 도입하여 급경사에서 정확도가 향상된 식을 유도하였다. 경사면에서의 반사율을 비교한 결과, 연속방정식 에 ▽S를 일부 포함하고, 운동량방정식에 S만 포 함하는 경우(즉, Model 3)에 경사면에서의 반사 를 정확하게 재현하였다. 추후에 고차의 수심미 분항을 정량적으로 비교하여 항의 중요도와 포함 여부의 결정에 대한 연구를 수행할 예정이다.

감사의 글

본 논문의 제2저자는 중소기업청의 '산학 공동 기술개발지원사업(공동연구:(주)대영엔지니어 링)'의 지원을 받았고, 제3저자는 한국해양수산 진흥원의 '항만구조물 신뢰성 설계법 개발'과 제(PM48400)와 서울대학교 BK21 안전하고 지속가 능한 사회기반 건설사업단의 지원을 받았습니다.

참고문헌

- 이창훈, 조은경, 조용준(2003) 바닥의 변화에 대 한 확장형 Boussinesq 방정식의 거동, 대한토 목학회논문집, 23(6B), 607-613.
- 김건우, 이창훈, 서경덕(2007) 급변수심에 적용 가능한 확장형 Boussinesq 방정식, 대한토목학 회논문집, 27(5B), 553-562.
- Booij, N. (1983) A note on the accuracy of the mild-slope equation. Coast. Engrg, 7, 191-203.
- Gobbi, M.F. and Kirby, J.T. (1999) Wave evolution over submerged sills: tests of a high-order Boussinesq model. Coast. Engrg., 37, 57-96.
- Madsen, P.A. and Sørensen, O.R. (1992) A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly varying bathymetry. Coast. Engrg., 18, 183-204.
- Nwogu, O. (1993) Alternative form of Boussinesq equation for surface waves. Coast. Engrg., 19, 97-126.
- Peregrine, D.H. (1967) Long waves on a beach. J.Fluid Mech., 27, 815-827.
- Peregrine, D.H. (1972) Equations for water waves and the approximation behind them, Waves on Beaches and Resulting Sediment Transport, 95-121.
- Suh, K.D. (1999) Modeling of water wave propagation over rapidly varying topography, Proc. Int. Symp. on Progress in Coast. Engrg. and Oceanography, KSCOE, 2, 63-77.
- Wei, G., Kirby, J.T., Grilli, S.T., and Subramanya, R. (1995) A fully nonlinear Boussinesq model for surface waves. Part 1. highly nonlinear unsteady waves. J. Fluid. Mech., 294, 71-92.