Overwash에 대한 실험적 연구 Experimental Study of Overwash

<u> 박영현1</u>

Young Hyun Park¹

1.서 론

해마다 변화하는 해안 환경과 기후 변화에 따라 해 안 침식이 증가하면서, 해안선을 따라 만들어져 있는 dune 이나 berm 등은 해안 침식을 유발하는 외부 요 인에 대하여 자연 방파제와 같은 중요한 역할을 수행 하고 있다. 하지만 이런 자연 구조물 등이 overwash와 같은 강력한 자연 현상에 의하여 피해를 입거나 최종 적으로는 해안 침식에 대해 무력하게 된다. Overwash 는 해안선에 대해 수직(cross-shore)으로 작용하는 해 안 침식의 주된 요인 중 하나이다. Overwash는 wave overtopping, storm surge 또는 해수면 상승과 통반하 여 발생하며, 특히 해안에 태풍 상륙 시 가장 큰 침식 피해를 발생 시킨다. Overwash는 짧은 기간 또는 긴 기간에 걸쳐 해안에 영향을 미치며, 이로 인한 침식 현상은 오래 전부터 심각한 문제로 간주되어 왔으나, 관측 및 실험의 어려움으로 그 특성에 대한 연구는 부 족한 실정이다.

Hughes and Chiu (1981)는 소규모의 수리 실험을 통 하여 태풍 접근 시 해안 침식과 관련이 되는 요소들에 대한 연구를 수행하였다. Hancock (1994)은 불규칙 파 에 의한 overwash 실험을 실시하였으며, 각 overwash 발생 시 침식된 토사의 양을 측정하여 간접적으로 overtopping된 유체에 포함 된 유사의 농도를 계산하 였으나, 실험 규모에 비하여 상대적으로 사용된 토사 입자 크기가 너무 커 적용에 한계를 가지고 있었다. Park (2006)은 실험 규모를 증가하여 규칙과와 불규 칙과에 대한 실험을 실시, 그 결과로 overwash에 대한 실험식을 제시하였다.

본 연구에서는 이에 따라 각기 다른 해안 경사와 파고, 주기에 대한 영향을 규칙파와 불규칙파를 사용,

수리 실험과 분석을 실시하여 overwash 특성에 따른 실험식을 작성하였다.

2.실 험

실험은 폭 1.5 m, 높이 3.0 m, 길이 40.0 m 의 2차원 수조에서 실시하였다. Hinged flap type의 조파판이 바 닥으로부터 1.1 m 위에 설치되어있어, 파의 원활한 발생과 에너지 손실을 방지하기 위하여 나무로 된 false bottom 을 바닥에 설치하였으며 각 제원은 Fig.1 에 나타내었다.

실험에는 비중 2.65, 침강 속도 1.7 cm/s (20℃), 거 의 모든 입경 (*D*₅₀)이 0.15 mm 로 특별히 제작된 토사 를 사용하였다. 실험 수조의 끝에는 실제 해안의 berm과 같이 나무 구조물 위에 실험에 사용된 모든 파랑 조건에 대하여 overtopping이 발생할 수 있도록 1.5 m의 수평한 상부면을 가진 모래 구조물이 수면으 로부터 10 cm 위로 노출되어 설치되었으며 이 구조물 의 앞 경사는 1:4 와 1:5를 사용하였다.

실험에 사용된 파랑 조건은 규칙파와 불규칙파에 대하여 각각 2가지 파고와 4가지 파장이 사용되었으 며, 327초 동안 파를 발생시켜 실험을 실시하였다. 위 에서 언급된 2가지 다른 beach face 경사에 대하여 각 각 16종류의 다른 실험을 실시하였다 (Table 1).

Overwash에 의한 침식 및 퇴적 결과는 자동화 및 정밀도를 높이기 위하여 0.5 mm의 오차를 가지는 레 이저 장비를 사용하여, 1.0 mX7.0 m의 관측 영역을 각각 폭 방향으로 10 cm, 파랑의 진행방향으로 5 mm 마다 측정을 하였다. 조파가 정지된 327초 후에 beach profile을 측정하였으며, 여기서 측정된 각각의 해안 단면들은 overwash에 의한 침식과 퇴적량을 계산하

¹ 발표자: 서울대학교 BK21 안전하고 지속가능한 사회기반건설 사업단 박사후연구원

Fig. 1. 2차원 실험 수조의 측면도 및 실험에 사용된 Berm의 제원.

는데 사용되었다.

발생한 overwash의 횟수 및 이로 인한 bore의 속력 을 측정하기 위하여 berm 위에 2개의 파고계를, 입반 사파 분리를 위하여 수조 중앙에 3개의 파고계를 설 치하였다. 기지 거리의 2개의 파고계로부터 측정된 overwash bore의 속력은 실험식을 구성하는데 사용되 었다.

Table 1.	실험에	사용된	파의	특성.
----------	-----	-----	----	-----

Slope of foreberm	Regular	waves	Irregular waves		
	Wave	Wave	Wave	Wave	
	height Period height		period		
	<i>H</i> (m)	T (sec)	H_{mo} (m)	T_p (s)	
	0.14	1.4	0.10	1.4	
1 : 4 & 1 : 5	0.14	1.6	0.10	1.6	
	0.14	1.8	0.10	1.8	
	0.14	2.0	0.10	2.0	
	0.17	1.4	0.15	1.4	
	0.17	1.6	0.15	1.6	
	0.17	1.8	0.15	1.8	
	0.17	2.0	0.15	2.0	

3.실험 결과

각 실험 조건 (2가지 foreberm 경사, 2가지 파고, 4 가지 파의 주기)에 대해 규칙파를 사용한 결과는 Table 2에, 불규칙파를 사용한 실험 결과는 Table 3에 보여진다. 각각의 실험에서 overwash에 의해 침식, 퇴 적된 해안 단면은 레이저 장비에 의해 측정되었으며 그 부피가 계산되어 분석에 사용되었다. 해역과 육지 로 이동된 침식 토사들의 비율이 계산되었으며, 이 결 과는 침식된 후 육지로 이동하는 overwash의 특성을 분석하는데 사용되었다.

Table 2. 규칙파를 사용한 실험 결과.

Slope of fore berm	Wave height (m)	Wave period (sec)	Ratio of transport landward and seaward Landward Seaward		Number of over wash Events	Volume of overwash transport (cm ³ /cm)
1:4	0.14	1.4	16.67	83.33	117	230.00
		1.6	29.89	70.11	125	550.00
		1.8	49.62	50.38	132	876.42
		2.0	49.80	50.20	163	1200.53
	0.17	1.4	33.11	66.89	164	490.00
		1.6	37.64	62.36	204	670.00
		1.8	53.89	46.11	181	1040.00
		2.0	52.91	47.09	163	1180.00
1:5	0.14	1.4	10.00	90.00	46	100.00
		1.6	15.33	84.67	59	210.00
		1.8	44.55	55.45	181	490.00
		2.0	26.31	73.69	163	360.53
	0.17	1.4	23.58	76.42	105	250.00
		1.6	20.65	79.35	181	312.32
		1.8	19.46	80.54	181	222.32
		2.0	46.98	53.02	163	700.00

Table 2에서 보여지는 규칙파의 실험 결과는 경사 가 급할수록, 파고가 클수록, 파의 주기가 길수록 overwash에 의한 유사 이동이 증가하는 것을 확인 할 수 있었으며, 육지로의 이동 비율도 증가하였다.

불규칙파에 의한 실험 결과는 Table 3에서 보여지

며, 규칙파의 결과와 같이 경사가 급할수록, 파고가 클수록, 파의 주기가 길수록 overwash의 강도 및 overwash 발생 빈도가 증가하는 것을 확인할 수 있으 며, 수치로 표현할 수는 없으나 berm 후면으로 좀 더 멀리까지 이동하는 것을 보여주었다.

Slope Wave of height		Wave period T_p (sec)	Ratio of transport landward and seaward		Number of	Volume of overwash
tore H_{mo} berm (m)	Landward (%)		Seaward (%)	overwash Events	transport (cm ³ /cm)	
1:4	0.10	1.4	17.86	82.14	44	250.00
		1.6	13.42	86.58	52	200.00
		1.8	31.69	68.31	65	412.84
		2.0	27.83	72.17	71	466.68
	0.15	1.4	22.05	77.95	56	280.00
		1.6	26.49	73.51	73	400.00
		1.8	36.28	63.72	86	506.68
		2.0	32.19	67.81	91	498.47
1:5	0.10	1.4	14.29	85.71	26	150.00
		1.6	13.43	86.57	31	180.00
		1.8	28.92	71.08	49	248.21
		2.0	20.98	79.02	56	268.21
	0.15	1.4	21.36	78.64	40	220.00
		1.6	20.12	79.88	59	302.32
		1.8	22.84	77.16	63	272.32
		2.0	30.84	69.16	79	352.32

Table 3. 불규칙파를 사용한 실험 결과.

4. 실험식 작성

실험 결과로부터 실험식 작성은 규칙파와 불규칙 파로 나누어져 실시되었다. 우선 규칙파에 대한 실험 식 작성을 위하여 식 1에 포함된 유사의 운동과 관련 된 여러 요소들에 대하여 민감도 분석을 실시하였으 며, 그 결과로 식 2를 얻게 되었다.

$$\frac{Q_s}{\sqrt{gH^3}} = f_2\left(S, \frac{H}{L}, \xi, \frac{w}{U}, \frac{H}{wT}, \frac{U^2/g}{H}, \frac{U^2}{(SG-1)gd_{50}}\right)$$
(1)

여기서, S는 foreberm의 경사, H는 파고, L은 입사파 의 파장, ζ 는 Iribarren number, T는 입사파의 주기, w는 유사의 침강속도, *U*는 overwash에 의한 bore 속력, *g* 는 중력가속도, *SG*는 유사의 비중, *d*₅₀는 유사의 입자 크기이다.

$$\frac{Q_s}{\sqrt{gH^3}} = a_0 \,\xi^{a_1} \left(\frac{U^2}{(SG-1)gd_{50}}\right)^{a_2} \tag{2}$$

식 2로 부터 Robust regression (Rousseeuw and Katrien, 1999)을 사용하여 규칙파에 의해 침식되어 육지로 이동하는 유사량에 대한 overwash 최종식 (식 3)을 얻었으며, 계산된 유사의 단위는 m³/msec 이다.

$$Q_{s} = 3.427 \times 10^{-5} \xi^{2.5849} \left(\frac{U^{2}}{(SG-1)gd_{50}}\right)^{0.4223} \sqrt{gH^{3}}$$
(3)

규칙과에 대한 식 3으로부터 계산된 결과는 수리 실험 결과와 비교되었다. 그 상관성을 나타내는 R-square 값은 0.8791이며 결과는 그림 2에 나타나 있 다.

Fig. 2. 규칙파에 대한 수리 실험 결과와 개발된 실험식의 비교. 파란선은 완전 일치를 의미함.

불규칙파에 의한 결과에 대해서도 같은 방법을 사용하여 식 (4)와 최종식 (5)을 구하였다.

$$\frac{Q_s}{\sqrt{gH^3}} = a_0 \left(\xi\right)^{a_1} \left(\frac{H}{wT}\right)^{a_2} \tag{4}$$

$$Q_s = 3.71 \times 10^{-4} \xi^{2.0175} \left(\frac{H_s}{wT_p}\right)^{0.0603} \sqrt{gH_s^3}$$
(5)

불규칙파에 대한 식 5로부터 계산된 결과와의 비 교는 Fig. 3에 나타나 있으며, 상관성을 나타내는 R-square 값은 0.8531이다.

Fig. 3. 불규칙파에 대한 수리 실험 결과와 개발 된 실험식의 비교. 파란선은 완전 일치를 의미 함.

불규칙과를 위해 개발된 식 5를 사용하여 Park (2006)의 해안 관측 결과와 비교하였을 때 관측 값과 약9%의 차이를 보여주었다.

5.결 론

Overwash에 대한 특성을 이해하고 이에 의한 침식 예측을 위하여 2차원 수조에서 수리 실험을 실시하 였다. 수리 실험은 2가지 foreberm의 경사, 2가지 파 고, 4가지 입사파의 주기에 대하여 실시되었으며, 각 각의 조건이 overwash에 미치는 영향을 분석하여 실 험식을 작성하였다. Overwash에 의해 침식된 토사의 이동은 foreberm의 경사가 급할 때, 파고가 높을 때, 주기가 긴 경우에 증 가하며, 위의 조건에서 berm 이나 dune의 중심을 기 준으로 육지 쪽으로의 이동이 해역 쪽으로의 이동보 다 증가하는 것을 확인할 수 있었다. 개발된 실험식은 실제 해안에서 overwash에 의한 침식 이동량 계산 시 간단하고, 빠르게 사용할 수 있는 장점을 보여주었다. 극한 폭풍의 상륙 시 파의 주기가 10초 이상인 것 을 고려하였을 때, 본 실험에서 적용된 파의 발생 시 간 (327초)은 실제 해안에서의 약 30분에 해당하며 이 것은 태풍에 의해 발생된 overwash 예측에 부족한 시 간으로 생각된다. 따라서 향후 연구에서는 장기간의 변화에 대한 연구가 수행되어야 할 것이다.

참고문헌

- Hancock, M.W. (1994). Experiments on Irregular Wave Overtopping and Overwash of Dunes. Newark, Delaware: University of Delaware, Master's Thesis.
- Hughes, S.A., Chiu, T.Y. (1981). Beach and Dune Erosion during Severe Storms. Gainesville, Florida: University of Florida, Coastal and Oceanographic Engineering Department, UFL/COEL 99/001.
- Park, Y.H. (2006). Overwash induced by storm conditions. College Station, Texas: Texas A&M University, Ph.D. Thesis.
- Rousseeuw, P.J., Katrien V.D. (1999). A fast algorithm for the minimum covariance determinant estimator. Technometrics, 41, 212-223.