범람수치모의를 위한 다열기둥의 Manning계수 산정

Estimation of Manning Coefficient of Multi-Column for Inundation Simulation

<u>권갑근1</u>, 최준우2, 김형석3, 윤성범4

Kab Keun Kwon¹, Junwoo Choi², Hyeong Seok Kim³, Sung Bum Yoon³

1.서 론

범람수치모의에서 범람지역내 구조물 표현의 한계 성과 긴 계산시간으로 인하여 3차원 모델보다는 일 반적으로 2차원 비선형 천수방정식(NSWE, Nonlinear Shallow Water Equation)을 사용한다. 이 때 범람지역의 구조물은 바닥마찰로 표현되고 이 를 Manning의 조도계수로 환산하여 천수방정식에 적용한다. 그러나 해수의 범람시 범람지역내 구조 물 주위에 발생하는 와류로 인하여 흐름저항이 크 게 증가하기 때문에 바닥조고에 의한 일반적인 개 수로와는 다르게 수심에 따라 에너지 손실은 변화 하게 된다. 따라서 이러한 경우 수심에 대해 일정 한 일반적인 Manning계수를 적용하는 것은 한계 가 있으므로 바닥마찰뿐 아니라 수면보다 높은 구 조물에 의해 발생하는 흐름저항까지 고려할 수 있 는 새로운 Manning계수의 개발이 필요하다. 따라 서 본 연구에서는 범람수치모의시 범람지역내의 구조물로 인한 복합적인 흐름저항의 표현이 가능 한 Manning계수의 이론식을 제시하였으며 흐름에 잠기지 않고 변형되지 않는 다열기둥을 이용한 수 리실험을 수행하여 이론식과 비교·분석하였다.

2. 이 론

개수로에 흐름에 잠기지 않고 변형되지 않는 저 항체가 존재하는 경우 바닥조고에 의한 저항외에 도 저항체에 의한 흐름저항이 발생한다. 이런 저 항은 다음과 같이 바닥마찰에 의한 저항력(*F_s*)과 저항체에 의한 저항력(*F_s*)으로 나타낼 수 있다

- 3 한양대학교 토목공학과 석사과정
- 4 한양대학교 건설환경시스템공학과 교수

$$F_s = C_f \frac{\rho V^2}{2} PL \tag{1}$$

$$F_d = C_D \frac{\rho V^2}{2} A_p \tag{2}$$

여기서 C_f 는 마찰저항계수, C_D 는 형상저항계 수, ρ 는 유체밀도, V는 평균접근유속, P는 수로 윤변, L는 흐름방향 수로 길이, A_p 는 저항체의 흐름방향 투영면적이다. 이 두 저항력을 등류시 개수로의 운동량 방정식에 적용하면 다음과 같은 식으로 나타낼 수 있다.

$$\gamma AL\sin\alpha - \tau_s PL - NF_d = 0 \tag{3}$$

여기서 γ 는 단위중량, A는 유수면적, $\tau_s \equiv F_s/(PL)$ 는 바닥전단응력, N은 저항체의 개 수를 나타낸다. 경사가 완만하고 등류라고 가정하 면 $S_0 \approx \sin\alpha$ 이고 $S_0 = S_f$ 이다. (3)식을 에너지 경사(S_f)에 관한 식으로 정리하면

$$S_f = \frac{h_f}{L} = \left(C_f \frac{P}{A} + N \frac{C_D}{L} \frac{A_p}{A} \right) \frac{V^2}{2g}$$
(4)

P/A는 동수반경 R_h이고, 저항체의 총개수 N
은 흐름방향 저항체의 개수 N_F와 흐름의 횡방향
저항체의 개수 N_T의 곱으로 나타내면 다음과 같
이 정리할 수 있다.

¹ 발표자: 한양대학교 토목공학과 박사과정

² 한양대학교 토목공학과 박사후과정

$$S_f = \left(\frac{C_f}{R_h} + \frac{N_F C_D}{L} \frac{N_T A_p}{A}\right) \frac{V^2}{2g}$$
(5)

저항체의 형상이 동일하고 흐름방향이나 횡방향 으로 일정한 간격으로 배열되어 있는 경우, 저항 체의 흐름방향 폭을 b, 흐름방향으로 이격된 간 격을 s라 하면 (5)식의 $N_p/L를 1/(s+b)$ 로 교체 할 수 있다. 또한 전체 유수단면적에서 저항체의 투영면적의 비를 공극률 $r_0=1-N_TA_p/A$ 의 식으 로 변경하면 다음과 같이 나타낼 수 있다.

$$S_f = \left(\frac{C_f}{R_h} + C_D \frac{1 - r_o}{s + b}\right) \frac{V^2}{2g} \tag{6}$$

 $C_f = f/4$ 로 교체한 후 에너지 경사 $S_f =$ Manning의 평균유속공식에 대입하면 다음과 같은 Manning계수의 형태로 정리가 가능하다.

$$n = \sqrt{\left(\frac{f}{4} + C_D \frac{1 - r_o}{1 + s/b} \frac{R_h}{b}\right) \frac{R_h^{1/3}}{2g}}$$
(7)

무한히 넓은 수로로 가정하여 R_h 를 수심 y로 대체하고, 바닥조고만에 의한 Manning의 조도계 수 $n_b = \sqrt{f R_h^{1/3}/8g}$ 를 식(7)에 정리하면 다음과 식으로 나타낼 수 있다.

$$n = \sqrt{n_b^2 + C_D \frac{1 - r_o}{1 + s/b} \left(\frac{y}{b}\right) \left(\frac{y^{1/3}}{2g}\right)}$$
(8)

식(8)은 일정한 간격으로 배열되어 있는 저항 체에 의해 발생하는 흐름저항이 다음 저항체의 흐 름저항에 영향을 미치지 않는 경우에 적용이 가능 한 식이다. 만약 저항체들의 흐름저항이 서로의 흐름에 영향을 미치는 경우 이를 표현할 수 있는 새로운 저항계수의 추가적용이 필요하다.

$$n = \sqrt{n_b^2 + C_{DI}C_D \frac{1 - r_o}{1 + s/b} \left(\frac{y}{b}\right) \left(\frac{y^{1/3}}{2g}\right)} \tag{9}$$

여기서 C_{DI} 는 항력상호작용계수(Drag Interaction Coefficient)라고 명명하였다. C_{DI} 는 Reynolds수, 저항체의 형상, 저항체의 배열이 나 이격거리등의 함수일 것으로 추정하나 본 연구 에서는 C_D 가 일정한 값을 가지는 형상과 Reynolds수의 흐름조건을 적용하여 C_{DI} 가 흐름방 향과 흐름 횡방향에 따른 저항체들 간의 간격의 함수라고 가정하였다.

3. 수리실험

범람지역내 잠기지 않는 구조물에 의한 흐름저 항을 파악하기 위하여 수리실험을 수행하였다. 수리실험은 Fig. 1과 같이 길이 12m, 높이와 폭이 각 40cm인 유량과 경사를 조절할 수 있는 수로에 서 한변의 길이가 11.4cm인 강철재질의 정방형 다열기둥을 일정하게 배열하여 실험하였다.

Fig. 1. Schematic diagrams of experimental set-up

of double-row piers(unit: mm)

유수시 유속에 의한 다열기둥의 전도를 방지 하기 위하여 기둥내부에 모르타르를 채워 사용하 였다. 실험방법은 우선 다열기둥을 일정한 간격 으로 배열한 후 0.002~0.007m³/s범위의 일정한 유량의 물을 수로에 유수시켰다. 다열기둥의 간 격은 흐름방향으로 0~1.1m까지 다양하게 변화시 켰으며 수로 횡방향으로는 1열및 2열로 배치하여 실험하였다. 다양한 수심값을 얻기 위하여 수로의 경사를 0.001~0.01범위로 일정하게 변경한 후 하 류웨어를 조절하여 상류, 중류, 하류부의 수심을 일치시켜 등류를 형성하였다. 수심은 초음파수위 사용하여 측정하였으며 아래와 같은 계를 Manning공식에 대입하여 흐름에 잠기지 않는 구 조물에 의한 에너지 손실을 나타내는 Manning계 수를 측정하였다.

$$n = \frac{1}{V} y^{2/3} S_f^{1/2} \tag{10}$$

여기서 등류상태에서 실험을 수행하였기 때문 에 에너지 경사 S_f 는 수로경사 S_0 와 동일하다. V는 평균유속으로 실험에 사용된 유량 Q를 구조물 을 무시한 유수단면적 A로 나누어 계산하였다. 본 실험은 일정한 C_D 값을 유지하기 위해 정방 형의 형상이 일정한 *C_D*값을 갖는 범위인 10⁴범위 의 Reynolds수를 유지하였다. vortex shedding으 로 인한 수로내 부진동현상을 방지하기 위하여 기둥배후에 얇은 판을 부착하여 실험을 수행하였 다.

4. 실험결과

4.1 이격거리에 따른 Manning계수의 변화

이격거리에 대한 실험결과 이격거리가 변화할 수록 *n*값 역시 변화하였다.

Fig. 2. Variation of *n* value as changing *s* and w (y=7cm)

Fig. 2는 수심이 7cm 이고 수로 횡방향으로 기 등을 1열과 2열로 배치한 경우 흐름방향 이격거리 s의 변화에 따른 n값의 변화를 나타낸 그래프이 다. 실험결과 s/b가 약 2.2에서 n값은 최대값을 보였으며 s/b가 2.2보다 작은 경우에는 이격거리 가 증가할수록 n값은 증가하였다. 이는 기둥 뒤 에 와류가 완전히 발달할 수 있는 배후공간이 충 분히 확보되면 배후공간이 좁은 경우에 비해 와 류의 크기는 커지고 에너지손실은 증가하여 일정 이격거리에서 에너지 손실이 최대가 되고 따라서 n값은 최대가 된다. s/b가 2.2보다 큰 경우에는 이격거리가 증가할수록 n값은 서서히 감소하였 다. 이는 이격거리가 와류가 완전히 발달할 수 있을 만큼 충분하지만 단위길이당 기둥의 수가 감소하기 때문에 기둥뒤에 발생하는 와류의 수도 감소하여 n값은 서서히 감소하게 된다.

면적공극률 r_0 에 대한 영향을 파악하기 위해 수 로 횡방향으로 일정한 흐름방향 이격거리 s로 배 치된 다열기등을 1열과 2열로 배열하고 실험을 수행하였다. 실험결과 면적공극률이 작은 경우, 즉 2열 배열의 결과가 1열배열의 결과보다 n값이 더 높게 측정되었다. 기둥이 배열이 1열에서 2열 로 증가하면 즉 면적 공극률이 감소하면 단위폭 당 와류를 발생시키는 기둥의 수가 2배로 증가하 여 수로내 에너지 손실은 증가하고 결국 n값은 증가하게 된다.

Fig. 2의 가는 점선과 실선은 이론식(8)을 도시 한 것이다. n_b의 값은 매끄러운 금속바닥을 나타 내는 조도계수인 0.012, CD의 값은 정방형의 형 상계수인 2.1, 기둥폭 b는 0.114m, 등류수심 y =0.07m를 이론식(8)에 대입하였다. 공극률 ro는 수로 횡방향 1열배열인 경우 0.715, 2열배열인 경우 0.43을 대입하였다. 이론식(8)은 C_{DI}가 1인 경우로 기둥의 의한 흐름저항이 다른 기둥의 의 한 흐름저항에 영향을 미치지 않는 즉 각 기둥에 의한 흐름저항이 서로 독립적이라고 가정한 식이 다. 이론식(8)의 도시결과 기둥이 1열로 배치된 결과에서 s/b>3인 경우 실험치와 이론값은 일치 하였다. 이는 s/b>3일 때 1열 다열기둥의 흐름방 향 이격거리에 의한 공간과 수로 횡방향 이격거 리에 의한 공간이 충분하여서 와류로 인한 흐름 저항이 다른 기둥에 의한 흐름저항의 영향을 받 지 않는다는 의미이다. 그러나 1열 기둥의 s/b<3 인 경우나 2열기둥의 경우 실험치와 이론값은 많 은 차이를 보였으며 이는 기둥간의 간격이 충분 하지 못하여 흐름저항이 상호간에 영향을 주어 실험치와 이론값과의 차이가 발생한 것으로 파악 된다. 흐름저항의 중첩으로 인한 영향을 고려하 기 위하여 Cni를 고려한 이론식(9)를 적용하였 다. 우선 수로 횡방향 이격거리 영향을 포함하지 않고 흐름방향 이격거리만의 영향에 따른 항력상 호작용계수를 C_{DFF}라고 정의하고 s/b만의 함수라 고 가정한 후 실험치에 근접하도록 다음의 경험 식을 추정하였다.

$$C_{DIF} = 1 - 0.95 \exp[-0.39(s/b)^{1.8}]$$
(11)

수로 횡방향 이격거리에 관한 상호작용계수를 C_{DIT} 라고 정의하면 C_{DI} 는 $C_{DI} = C_{DIT} \times C_{DIF}$ 로 나 타낼 수 있다. 다열기둥의 수로 횡방향 1열 배치 인 경우 수로 횡방향 이격거리에 대한 영향이 거 의 없으므로 C_{DIT} =1을 적용하고, 2열배치의 경우 는 횡방향 이격거리의 영향을 고려하여 실험치에 서 얻은 경험상수를 적용하여 C_{DIT}=3.1을 대입한 후 Fig. 2에 굵은 실선과 점선으로 도시하였다. Fig. 2에서 C_{DI}가 적용된 이론값과 실험치는 잘 일치하였으며 따라서 CDT가 다른 요소보다 흐름 방향 이격거리와 수로 횡방향 이격거리에 큰 영 향을 받고 있음을 확인하였다. Fig. 3은 수로 횡 방향으로 2열로 배치된 다열기둥의 다양한 등류 수심값에서 얻은 실험치를 CDI가 적용된 이론값 과 비교한 그림이다. 다양한 수심에서도 Cnr가 적용된 이론값은 실험치와 일치하는 것을 확인할 수 있다.

Fig. 3. Variation of n value as changing s/b with double-row piers

4.2 수심에 따른 Manning계수의 변화

Fig. 4. Variation of n value as changing y/b with double-row piers

(where s/b=0.535, 2.175, 6.14)

Fig. 5. Variation of n value as changing y/b with single-row piers

(where s/b=0.316, 0.754, 4.386)

개수로에서 바닥조고가 수심에 비해 상당히 작 은 경우 n값은 수심에 무관하지만 범람지역의 경 우처럼 수로에 수면보다 높은 구조물이 존재하는 경우 n값은 수심에 따라 변화하고 이를 다열기둥 을 이용한 수리실험을 통해 확인하였다. 이는 수 면보다 높은 구조물이 존재하는 경우 유수시 수 심이 증가할수록 기둥 뒤에 생기는 와류의 길이 도 같이 증가하기 때문에 n값은 증가하는 것으로 파악된다. Fig. 4와 5는 각각 수로 횡방향 2열기 등과 1열기둥에 대한 실험치와 C_{DT} 가 적용된 이 론값을 도시한 그림이다. 수리실험결과 수심이 증가할수록 n값은 비선형적으로 증가하였으며 이 를 C_{DT} 가 적용된 이론값과 같이 도시한 결과 이 론값과 실험치는 잘 일치하였다. 바닥마찰에 의 한 에너지 손실이 흐름저항체에 의한 에너지 손 실에 비해 무시할 수 있는 경우 이론식(9)에서 n 값은 수심의 2/3승으로 증가하게 된다. 실험값과 이론치는 비교적 잘 일치하였으므로 이로부터 수 로내 수면보다 높은 구조물이 존재하는 경우 n값 은 수심의 2/3승으로 증가하는 것을 확인하였다.

5. 결 론

범람시 범람수위가 지역내 구조물보다 낮게 형 성되는 경우 흐름은 일반적인 개수로와는 다르 다. 따라서 범람흐름에 의한 흐름저항을 고려하 여 범람수치모의에 이용하기 위해 Manning계수의 이론식을 제시하였고 다열기둥을 이용한 수리실 험을 수행하여 이론식과 비교하였다. 수리실험 결과 s/b가 약 2.2에서 최대 n값을 나타냈으며 실험결과로부터 추정하여 CDF의 경험식을 구하 였다. 또한 실험값과 비교하여 C_{DIT}의 상수값을 구하였으며 CDIF와 CDIT가 적용된 CDI를 본 논문 에서 제시한 이론식에 적용하여 실험치와 비교한 결과 이론값과 실험치는 잘 일치하였고 이를 통 해 Cnr는 수로의 횡방향 이격거리와 흐름방향 이 격거리에 주된 영향을 받는다는 것을 확인하였 다. 또한 수면보다 높은 구조물이 존재하는 경우 수리실험을 통하여 수심이 증가할수록 n값도 비 선형적으로 증가하는것을 확인하였으며 C_{DF}가 적 용된 이론식을 실험결과에 적용한 결과 n값이 수 심의 2/3승으로 증가한다는 것을 확인하였다.

감사의 글

본 연구의 수행을 위한 소방방재청 자연재해저감기 술사업(지진해일 재해저감기술 개발, 과제번호 : NEMA-06-NH-06)의 지원에 감사를 드립니다.

참고문헌

Chow, V. T. (1959). Open-Channel Hydraulics. McGraw-Hill Book Co., New York, pp. 97-114.