ABSTRACT

Steel columns, main members of cable-railway structure, are linked each other by cable, its structural behavior is considered as cantilever structure. Under the present cable-railway code, main design load is wind load which is only defined vertical load. But the frequency of earthquake occurrence has increased in recent days and the seismic design code is intensified, necessities of seismic design are discussed. In this study, necessities of seismic design code of cable-railway are proposed by examining the seismic response of cable-railway columns designed by KBC(Korea Building Code), by comparing structural behavior of seismic and wind.

1. 서 론

삭도시설은 주요구조부인 강지주와 상호간 케이블로 구성된 운송수단으로 철도시설로 분류되어 있으며, 설계기준은 ‘삭도·궤도 건설에 관한 세부기준(2006, 국토해양부)’을 따르고 있다. 현행 섹도시설에 대한 설계기준에 의하면 주요하중은 횡하중이며, 횡하중은 풍하중만을 고려하고 있다. 그러나 최근 국내 제공시설의변도가 증가하고 케이블훈련성 지진으로 인하여 공공시설은 비롯한 시설들의 지진에 대한 안전성과 관련하여 사회적 관심도가 증대하고 있다. 이에 정부는 연초 지진재해대책법을 제정하고 이를 통하여 대통령령으로 정하는 시설에 대하여 관계 법령 등에 내진설계기준을 정하고 그 이행에 필요한 조치를 취하도록 하였다. 이에 따라 섹도시설에 대한 내진설계기준이 필요성이 검토되어야 한다. 본 연구는 풍하중과 건축구조설계기준에 정의된 지진하중으로 섹도시설의 구조적 거동을 분석하고, 이를 비교·검토하여 섹도시설의 내진설계가 필요하다는 결론을 얻었다.

2. 설계하중

2.1 섹도·궤도 건설에 관한 세부기준

섹도·궤도 건설에 관한 세부기준의 주요 설계하중인 풍하중은 운행중 하중과 정지중 하중으로 나누어서 다음과 같이 검토한다.

운행중 풍하중 $ W_M $은

$$ W_M = A_P \times W_{PM} \quad \cdots \cdOTS
여기서, \(A_p \) : 지주의 총 수평투영면적 \((m^2) \)
\(W_{PM} \) : 단위면적에 대한 풍압을 평면인 경우 50 \((kg) \), 원통인 경우 30 \((kg) \)
정지중 풍하중 \(W_s \)은
\[W_s = A_p \times W_{PS} \]
여기서, \(W_{PS} \) : 단위면적에 대한 풍압을 평면인 경우 200 \((kg) \), 원통인 경우 120 \((kg) \)

2.2 건축구조 설계기준

건축구조 설계기준의 설계지진력은 구조물의 진동주기와 지진응답계수를 통하여 구조물의 밑면 전단력의 구합니다.

진동주기 \((T) \):
\[T = C_T H^{3/4} \]
여기서, \(C_T = 0.085 \) : 철골 모멘트골조
0.073 : 철근콘크리트 모멘트골조, 철골 편심가세골조
0.049 : 그 외 다른 모든 건물
\(H \) : 건물의 밑면으로부터 최상층까지의 전체 높이 \((m) \)

지진응답계수 \((C_S) \):
\[C_S = \frac{S_{DP}}{R} T \]
\[C_S = \frac{S_{DS}}{I_E} \]
\[C_S = 0.044 S_{DS} I_E \]
여기서, \(S_{DP} \) : 주기 1초의 설계스펙트럼가속도
\(S_{DS} \) : 단주기 설계스펙트럼가속도
\(R \) : 반응수정계수
\(I_E \) : 중요도계수

밑면전단력 \((V) \):
\[V = C_S W_o \]
여기서, \(W_o \) : 유효 건물중량

3. 해석모델

삭도지주의 내진성능을 평가하기 위하여 경기도 소재 A리조트의 왕복삭도 6호 지주를 이용하였다. 구조해석은 범용구조해석 프로그램인 midas Gen을 이용하였다.

<table>
<thead>
<tr>
<th>표 1. 해석모델의 제원</th>
</tr>
</thead>
<tbody>
<tr>
<td>위치</td>
</tr>
<tr>
<td>지반종류</td>
</tr>
<tr>
<td>지주의 높이</td>
</tr>
<tr>
<td>지주의 질량</td>
</tr>
<tr>
<td>지주의 재료</td>
</tr>
</tbody>
</table>
각각의 해석모델은 조합하중에 의한 영향을 고려하지 않았으며, 해석모델의 변수는 삭도기준을 적용한 기준모델 CC와 KBC2005를 적용한 C5, KBC2008(안)을 적용한 C8로 분류하여 C5, C8은 지역계수와 지반종류의 변화에 따른 구조물 기능을 파악하였다.

<table>
<thead>
<tr>
<th>해석모델 분류</th>
<th>적용기준</th>
<th>지진지역</th>
<th>지반종류</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC1</td>
<td>삭도기준(운행중)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CC2</td>
<td>삭도기준(정지중)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C5B1</td>
<td>KBC2005</td>
<td>1</td>
<td>S_a</td>
</tr>
<tr>
<td>C5C1</td>
<td>KBC2005</td>
<td>1</td>
<td>S_c</td>
</tr>
<tr>
<td>C5B2</td>
<td>KBC2005</td>
<td>2</td>
<td>S_c</td>
</tr>
<tr>
<td>C8B1</td>
<td>KBC2008(안)</td>
<td>1</td>
<td>S_a</td>
</tr>
<tr>
<td>C8C1</td>
<td>KBC2008(안)</td>
<td>1</td>
<td>S_c</td>
</tr>
<tr>
<td>C8B2</td>
<td>KBC2008(안)</td>
<td>2</td>
<td>S_c</td>
</tr>
</tbody>
</table>

4. 해석결과

4.1 변수별 하중 및 변위 형상

삭도기준을 적용한 CC1과 CC2에 가해진 수평하중은 각각 7.40kN과 29.58kN으로 운행중 고려되는 하중과 정지중 고려되는 풍하중의 값이 큰 차이가 있음을 알 수 있었다. KBC2005기준을 적용한 C5B1, C5C1, C5C2의 밑면 전단력에 비해 KBC2008기준(안)을 적용한 C8B1, C8C1, C8C2의 밑면 전단력이 상
대적으로 높은 값이 적용되었다. 이는 KBC2008기준에서 역추형 캔틸레버구조에 대한 반응수정계수값이 없어 역추형 철골보통모멘트골조의 반응수정계수값을 적용하였기 때문이다.

삭도설계기준의 풍하중에 의한 변위형상은 그림 3과 같이, 건축구조설계기준의 지진하중에 의한 변위형상은 그림 4와 같이 나타났다.

표 3. 해석모델의 변수별 수평하중

<table>
<thead>
<tr>
<th>적용기준</th>
<th>삭도기준</th>
<th>KBC2005</th>
<th>KBC2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>모델명</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5B1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5C1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5C2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8B1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8C1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8C2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

풍하중
- 운행중 풍하중 (\(W_{fl}\), kN) 7.40
- 정지중 풍하중 (\(W_{si}\), kN) 29.58

지진하중
- 지역계수 0.11 0.11 0.07 0.22 0.22 0.14
- 중요도계수(Ie) 1.0 1.0 1.0 1.2 1.2 1.2
- 반응수정계수(R) 2.5 2.5 2.5 1.25 1.25 1.25
- 단주기 설계스펙트럼 가속도(S10) 0.3658 0.4389 0.2793 0.3667 0.4327 0.2800
- 주기1초 설계스펙트럼 가속도(S01) 0.1463 0.2341 0.1490 0.1467 0.2317 0.1549
- 밑면전단력(Vs, kN) 12.60 20.08 12.78 30.32 47.52 30.75

그림 3. 삭도 강지주의 풍하중에 대한 변위형상

<운행중 X방향> <운행중 Y방향>

<정지중 X방향> <정지중 Y방향>

그림 3. 삭도 강지주의 풍하중에 대한 변위형상
4.2 해석결과의 분석

해석모델의 X방향과 Y방향의 수평변위 값은 각 해석모델 간 큰 차이가 없이 0.68Cm ~ 4.25Cm의 값을 보였으며, 이 중 C5C1과 C5C2가 4.25Cm와 4.20Cm로 가장 큰 값을 보였다. C8계열의 모델이 C5계열의 모델에 비하여 밀면전단력의 크기가 더 컸음에도 불구하고 변위증폭계수값의 차이로 인하여 수평변위 값의 차이는 미미하였다.

강지주에 가해지는 전단력과 모멘트값은 C8계열, C5C1, CC2, C5B1, C5C2, CC1의 순으로 나타났다. 이 중 설계하중값이 상대적으로 크게 설정된 C8계열 모델을 제외한 경우 지주에 작용하는 전단력은 CC2가 가장 크게 나타났으며, 지주에 작용하는 모멘트는 C5C1이 가장 크게 나타났다.

이상의 결과로 설계지반의 강도가 약한 경우 삭도설계기준에서 제시한 풍하중보다 지진하중에 의한 영향이 더 크게 나타날 수 있음을 알게 되었다.
5. 결론
삭도시설의 주요구조부인 강지주 설계에 있어 지진하중 고려여부에 대하여 샛도설계기준의 봉하중 2개 모델, 건축구조설계기준 2005의 지진하중 3개 모델, 건축구조설계기준 2008(안)의 지진하중 3개 모델을 비교하였다. 그 결과 설계지반의 강성이 약할 수록 샛도강지주에 작용하는 봉하중에 비하여 지진하중에 의한 영향이 높게 나타났다. 따라서 샛도 강지주 설계 시 지진하중에 대한 고려가 필요하다는 결론을 얻었다.

참고문헌
2. 국토해양부(2005), “건축구조 설계기준”, 국토해양부
5. 건축표준설계위원(2008), “KBC 기준안”, www.kbcode.or.kr, 대한건축학회