Evaluation of Solid Surface Properties by Analysis ofLiquid Penetration Rate into Powder Beds

최희규 ${ }^{\dagger}$, 왕림, 이웅, 김동욱, 김성수 ${ }^{*}$,하종학 ${ }^{* *}$
창원대학교 나노신소재 공학부; ${ }^{*}$ 경상대학교 BK 21 친환경냉열에너지기계연구사업팀; **부산대학교 대학원 분체공학협동과정
(hkchoi99@changwon.ac.kr')

Evaluation of solid surfaceproperties by analysis of liquid penetration rate into powder beds is veryimportant for application of powder products. The penetration rate was related thesurface property in powder beds. So, the contact angle values for severalpowders to analysis surface property of powder were obtained by Washbunequation and Wicking method. The surface free energy value $\gamma \mathrm{S}$ was divided into the polar component, $\gamma \mathrm{Sp}$, and the dispersion component, $\gamma \mathrm{Sd}$. Theinorganic powder such as calcite were used as test samples. The effect ofparticle size and the kinds of experimental liquid were obtained on penetrationrate. It was confirmed that the surface free energy of grinding sampledecreased than the classification sample.

Keywords: wettablity, contactangle, surface free energy, Washburn equation, wicking

C-6

첨가원소 $\mathbf{S n}$ 의 증가에 따른 $\mathbf{T i}-\mathbf{F e}-\mathbf{S n}$ 극미세합금의 미세조직 및 기계적 성질 변화
한준희, 송기안, 피동혁, 방창욱, 박진만, ,김기범 ${ }^{\dagger}$
세종대학교; ${ }^{*}$ 연세대학교
(kbkim@sejong.ac.kr')
In the present study, microstructural evolution and mechanical properties of Ti-Fe-Sn ultrafineeutectic alloys have been investigated. Ultrafine eutectic microstructureconsisting of a mixture of β-Ti solidsolution and FeTi intermetallic compound homogeneously formed in $\mathrm{Ti}_{70.5} \mathrm{Fe}_{29.5}, \mathrm{Ti}_{69.8} \mathrm{Fe}_{29.8} \mathrm{Sn}_{1}$ and $\mathrm{Ti}_{6,4}{ }_{4} \mathrm{Fe}_{2.8 .6} \mathrm{Sn}_{3}$ alloys. Addition of Sn in the $\mathrm{Ti}_{0.5} \mathrm{Fe}_{29.5}$ eutectic alloy induced volume fraction change of FeTi phase. Inaddition lattice parameter of β-Tiphase changed due to increasing Sn content. Addition of $\mathrm{Sn} 3 \mathrm{at} . \%$ inducedmorphology change of the eutectic colony into spherical shape and decreasing ofcolony size. Refining of microstructure reveal that development of mechanicalproperties, With increasing the content of Sn in these alloys, it is effectiveto enhance the macroscopic plasticity up to 4.7%.
Keywords: Ti , 공정합금, 미세조직, 전단띠

