게이트 전압 패턴 분석을 통한 IGBT의 대전류 스위칭 특성 분석 방법

<u>김봉석</u>, 고광철

한양대학교 전기공학과 대전력응용공학연구실

A Gate Pattern Diagnosis Method of IGBT to Evaluate Internal Temperature

Bongseong Kim, Kwang-Cheol Ko Applied high power Lab, Electric engineering department, Hanyang University

Abstract - 본 논문은 IGBT의 transient turn off 시간 동안 게이트 전 압의 변화를 측정하여 IGBT가 스위칭 조건에서 상당히 열적 스위칭 특 성이 많은 영향을 미치는 파워 모듈레이터나 인버터 시스템에서 간단하 게 IGBT의 내부 온도를 유추하는 방법을 제안하고 있다.

1. 서 론

기존의 IGBT의 온도 측정은 module type에서는 참고문헌과 같은 열 적 모델을 사용하거나 IGBT의 steady turn-on시간 동안의 current와 saturation voltage를 통하여 온도를 간접적으로 계산해왔다 [1][2][3]. 실 제적으로 current와 saturation voltage를 사용하여 온도를 간접적으로 계산하는 방법에 있어서, sensing resistor나 CT (Current Transformer) 를 이용하여 IGBT의 고장과 온도를 모니터링하고 있지만, sensing resistor나 CT를 사용할 경우, 대전류/고속의 스위칭이 요구되는 파워 모듈레이터와 같은 어플리케이션에서는 sensing component 자체의 delay와 detection error로 인하여 빠른 소자보호가 용이하지 않으며, 구 성회로가 복잡해지는 문제점이 있다.

IGBT는 모두 PT type(Punch-Through) 을 기준으로 고안되었으며 PT type에 대한 열적 모델을 제시하고 있다. 본 논문에서 제안하는 게 이트 전압 패턴 분석 방식은 IGBT의 게이트와 에미터 사이의 전압을 측정하는 방법을 제안하고 있다. 본론에서는 실제적으로 IGBT의 turn-off time에서의 switching governing equation을 이용하여 게이트-콜랙터 간의 커패시터 충전 시간이 어떤 영향을 미치고 있는지 제시하 며 이를 통한 hole mobility의 계산 그리고 열적 등가모델과 시뮬레이션 결과를 제시하고 있다.

2. 본 론

2.1 IGBT의 turn-off switching 시의 스위칭 특성

IGBT의 turn-off시간의 게이트 전압의 변화를 중점적으로 다룬 목적 은, IGBT의 내부 등가회로가 실제적으로 MOSFET과 BJT의 조합으로 되어 있으며, turn-off시에는 BJT의 main body영향이 크게 나타나기 때 문이다. 이는 turn-off시 게이트 전압은 turn-on을 유지하기 위하여 계 속적으로 게이트 전압을 인가하다가 전압을 0 또는 negative biased voltage로 낮추기 때문에 실제적으로 인가한 게이트 전압에서 0으로 낮 아지는 시간은 BJT의 영향이 크기 때문이다. <그림1>은 Fly-back type 의 파워시스템을 구성한 조건에서의 IGBT의 turn-off시의 게이트 전압 변화에 따른 IGBT의 전류 그리고 전압의 변화를 보여주고 있다.

IGBT의 turn-off시 switching phase는 크게 3단계로 나누어 이야기 할 수 있다. 게이트 패턴 분석 방법에서 중점적으로 다룬 Phase는 Phase 2 구간으로 Phase1에서는 IGBT의 스위칭 delay time을 결정하는 구간으

로 Phase 2.구간 동안에는 Vce, IGBT의 콜렉터-에미터간의 전압의 변 화는 식1 과 같이 변화한다 [4].

$$\frac{dV_{CE}}{dt} = \frac{V_{GE,I_0}}{C_{gc}(t) \times R_G} \tag{1}$$

그리고 current Ic(t)는 아래 식(2)와 governging equation을 따라 변화 하게 되며, 내부 커패시턴스 값 $C_{gc}(t)$ 에 의하여 결정된다.

$$\frac{di_c}{dt} = g_m \frac{V_{GE,I_0}}{(C_{gc} + C_{ge}) \times R_G}$$
(2)

Phase 2의 경우, IGBT의 전압/전류의 변화식은 식(1)과 (2)에 관련하여 변화하지만, IGBT의 게이트와 에미터 단의 전압 변화는 보여지지 않는 다. 이때의 게이트와 에미터 단에서는 <그림2>과 같이 PNPN junction 에서 depletion region을 형성하는 시간으로 charge elmination이 일어난 다. Phase 2의 종말 시점에서는 IGBT의 BJT tail current가 중점적으로 보여지고 있기 때문에, Cgc(t) 시간을 측정한다면, BJT의 tail current를 구성하고 있는 hole current의 mobility를 계산할수 있으며 mobility를 통하여 ambipolar diffusion length와 BJT의 gain 값을 유추해 낼 수 있 다.

turn-off시 IGBT의 1-Dimension model <그림 2> PT type의 IGBT의 1-Dimension model

2.2 IGBT의 열적 특성에서 Cgc 영향

<그림 2>에서 보여지는 바와 같이 IGBT의 turn-off를 주요하게 영향 을 미치는 요소는 gate-collector간의 커패시터 Cgc이다. Cgc는 실제적 으로 IGBT의 steady turn-on 상태와 steady turn-off 상태를 비교했을 때, turn-off시의 Cgc 커패시턴스는 10-15배정도 크다. Cgc(t)는 gate와 N- main body사이의 oxide region에 의한 C_{oxide}와 PNPN구조에서 depletion region에 관련하는 Cgc(t)의 직렬 형태로 보여진다.

기본적으로 <그림 1>의 Phase 2를 시간이 끝나는 시점 t2에서 Cge(t) 는 식(3)과 같은 커패시턴스를 가지게 된다.

$$C_{gc} = A_{GC} \sqrt{\frac{q \cdot \varepsilon_{si} \cdot N_C}{2(V_{ce} - V_{ge})}}$$
(3)

Cgc(t)값의 변화가 선형적으로 변화한다라고 가정했을 때 Cgc(t)는 Coxide||Cgc(t)로 결정되며, 이에 따라 Phase 2에서의 Cgc 값의 변화는 식 (4)와 같은 그림을 보여주고 있다.

$$C_{gc}(t) = \frac{A_{GC}\sqrt{\frac{q \cdot \mathcal{E}_{si} \cdot N_{C}}{2(V_{ce} - V_{ge})}} - C_{gc_oxide}}{t_{vd}} t + C_{gc_oxide}$$
(4)

여기서 게이트 전압 패턴 분석을 위하여 측정해야 하는 값은 txd시간

과 IGBT 양단에 인가한 전압 V_{ce}, 그리고 steady turn-on 상태에서의 IGBT의 C_{gc}커패시턴스 C_{oxide}이다. Cgc(t)와 txd값을 통하여 N- main body내의 전하량 값과 이동도 및 ambipolar defusion length를 통하여 IGBT의 transconductance 식(5)와 PNP gain 식(6)을 유추해낼 수 있다.

$$g_{m} = \frac{1}{(1 - \alpha_{PNP})} \frac{\mu_{ns} C_{cg_oxide} Z}{L_{ch}} (V_{ge} - V_{th})$$
(5)

(6)

〈표 1〉 Model parameter. SGF5N150UF

 $\cosh(1/L_{\perp})$

 $\alpha_{PNP} =$

	• •	
Name	Description	Value
V_{ce_max}	최대 스위칭 전압	1500V
Ices	콜렉터-에미터간 cut-off 전류	1mA
I_{ges}	게이트 에미터간 누설 전류	100nA
V_{th}	threshold voltage	3.0V
V_{sat}	Saturation voltage	4.5 to
		5.5V
C_{ies}	input capacitnace steay on state에서의	780pF
	C _{gc}	
C_{oes}	output capacitance, C _{gc_oxide} +C _{ge}	130pF
C_{res}	reverse capacitance, C_{gc_oxide}	70pF
Qg	total gate charges	30nC
Q_{ge}	Gate-Emitter charges	3nC
Qgc	Gate-Collector charges	15nC
Ic	Collector current, main current	5A at
		25℃
		10A at
		150℃
Nc	N ⁺ main body의 doping concentration	1.0E20
\mathcal{E}_{si}	dielectric constant	4.5
Ls	leakage inductance	1µH
A _{GC}	Gate-Emitter oxide area	17µm

2.3 열적 등가회로

<그림 3>은 IGBT의 열적 등가회로로 Cgc(t), gm값에 의하여 스위칭 특성이 결정되는 모델이다. 위의 모델은 식 (5)와 (6) 그리고 <표 1>의 모델 파라미터를 사용하여 작성되었다. main current는 중점적으로 In current에 의하여 동작하며, Ip는 t_{xd} 시간에서의 값을 지시한다. Iav는 avalanche effect에 의한 current 값을 지시한다. 시뮬레이션과 실제모델 과의 차이점을 IGBT의 거동을 보기 위하여 IGBT 내부의 free whiling diode를 생략했으며, 외부의 게이트 저항 Rg 역시 일정한 값으로 열적 변화량은 없는 것으로 계산하였다. 시뮬레이션 결과는 <그림 4>와 같이 보여지고 있다. 시뮬레이션 결과에서의 temperature는 main current Ic(t)와 saturation 전압 Vsat의 곱을 통한 steady turn-on 시간을 기준 으로 기존의 thermal model를 사용하였다 [5].

<그림 4>의 시뮬레이션 결과는 실제적으로 유추한 결과의 경향성을 보여주고 있다. 온도의 증가에 따른 IGBT 내부의 PNP gain이 증가하 고, 더 많은 전하가 <그림 1>의 phase 2의 IGBT내부에서 존재하기 때 문에 room temperature에 비교하여 t_{xd} 시간이 길어지는 경향이 있다.

<그림 4> Simulation 결과

3. 결 론

본 논문에서 제안한 IGBT의 turn-off swithcing phase에서의 gate 전 압의 변화를 분석하는 방법은 비교적 회로 상에서 간단히 측정될 수 있 으며 또한 기존의 게이트 전압의 fault detection circuit 회로를 사용할 수 있기 때문에 상당히 효과적이며 그에 관련한 열적 특성을 측정하는 데 매우 효과적일 것으로 판단된다.

하지만, 실제적으로 txd time을 통한 전하의 이동도를 계산하는 방법 에 있어서는 여러 가지 가정, 가령 내부 MOSFET의 Vge값 및 Vsat의 측정 및 외부 회로 영향에 대하여 값이 변하지 않거나 또는 값의 변화 가 매우 미묘하다는 가정을 세웠기 때문에 실제적으로 <그림1>의 pahse2 구간에의 gate 전압은 일정하지 않고 온도의 상승에 따라서 <그 림4>와 같이 phahse 2의 시작점과 끝점 사이에서의 전압 강하분이 보 여지고 있다. 따라서 전압강하분의 영향 및 그에 관련한 detection circuit의 추가 회로 구성에 관련하여서는 추가적인 연구가 필요할 것으 로 보여진다.

[참 고 문 헌]

[1] Inho Song, Changho Choi, Moohyun Cho," Quench Protection System for the Superconducting Coil of the KSTAR Tokamak", IEEE Transactions on Applied Superconductivity, Volume 17, Issue 1, March 2007

[2] R. L. A. Ribeiro, C. B. Jacobina, E. R. C. da Silva and A. M. N. Lima, "Fault -tolerant voltage-fed PWM inverter AC motor drive systems," IEEE Transactions on Industrial Electronics, Vol. 51, No. 2, pp. 439 - 446, April 2004.

[3] A. M. S. Mendes and A. J. Marques, "Voltage source inverter fault diagnosis in variable speed ac drives, by the average current Park's vector approach," in Proc. IEEE International Electric Machines and Drives Conference, 1999, pp. 704 - 706.

[4] K.J Um, "IGBT Basics II", Application Note 9020 Rev. A (April 2002), http://www.fairchildsemi.com

[5] Calmon, F, Lefebvre, S, Chante, J.P, Ligot, D, Reymond, B, "Thermal behaviour of PT and NPT IGBT" Power Electronics and Variable–Speed Drives, 1994. Fifth International Conference, 26–28 Oct 1994 PP. 29 – 34