AN EVENT-BASED MIDDLEWARE FOR ANALYZING
CONTEXT INFORMATION UNDER USN ENVIRONMENT

Yongmi Lee’, Kwang Woo Nam**, Hi-Seok Kim , Keun Ho Ryu*

* Dept. of Computer Science, Chungbuk National University, Korea
410 Sungbong-Ro, Heungduk-gu, Chungbuk, Korea, 361-763
{ymlee, khryu}@dblab.chungbuk.ac kr
** Dept. of Computer Information Science, Kunsan National University, Korea
kwnam@kunsan.ac.kr
*** School of Electronics and Information Engineering, Cheongju University, Korea
khs8391(@cju.ac.kr

ABSTRACT: With the proliferation of advanced wireless network and sensor technologies, smart devices under
USN(ubiquitous sensor network) environment are capable of collecting context information such as temperature,
humidity, weight, and location about objects at real time. Therefore, applications must be able to analyze collected
information and notify useful information to wanted users timely. This service can be realized by implementing an
event-based middleware. In the middleware, event messages collected from physical environment will be filtered
according to profiles that users define in advance and the result will be sent to the interested users. In this paper, we
present XML-based event model, ECA-based profile model, and the architecture of an event-based middleware suitable
to USN environment. We will also model and describe them using the examples of logistics area. By implementing the
system based on the design above, the middleware enable applications or users to easily access to physical sources. The
proposed middleware can also apply to not only logistics area but also other various areas under USN environment

such as intelligent traffic control system, national disaster management system and u-medical system.

KEY WORDS: Event-based middleware, Context Information, Event, Profile definition, u-Logistics

1. INTRODUCTION

Advance in wireless network and sensor technology
allows applications to collect context information such as
temperature, humidity, weight, location, and so on from
intelligent objects at real time. Users under such USN
environment will expect to know context information
about interest of objects at real time.

We can support these services by implementing an
event-based middleware that analyzes newly collected
context information and notifies interest of information to
wanted users timely. In that service, context information
about objects corresponds to event messages and interest
of information corresponds to user profile, respectively.
Therefore, the systems must support data models that can
accurately express various event sources and profiles,
and present algorithms that can reduce the cost in event
filtering.

In this paper, we focus on implementing an event-
based middleware suitable to USN-based environment.
The central 1ssues of event-based system are how the data
are exchanged and which filtering techniques are used.
To do this, we suppose a XML-based event model and an
ECA-based profile model, and explain the models by
giving an 1llustration 1n u-logistics area. We also present
the architecture of the middleware based on the models
and a filtering algorithm that divides into two steps by
separating selection predicates and function predicates.
This technique intends to reduce filtering costs by

separating complex computations from relatively simple
selection predicates.

The proposed middleware can apply to not only
logistics area but also other various areas under USN
environment such as intelligent traffic control system,
national disaster management system and u-medical
system.

The rest of this paper is organized as follows. Section
2 gives a brief overview of works related to data
modelling and filtering techniques. Section 3 models
event and profile and Section 4 designs the architecture
of event-based middleware and its filtering technique. In
section 5, we implements the middleware based on the
data models and architecture. Finally, we conclude in
Section 6.

2. RELATED WORK

An event denotes the state transition of objects[Hinze,
2003]. Such changes will be delivered to any system after
transforming the events into a specific format. At this
time, the most simple method is to enumerate predicates
that consist of a pair of (attribute, value) like Siena
[Carzaniga, 1998], LeSubscribe[Pereira et al., 2001}, and
Yeast[Krishnamurthy et al., 1995] or express the event
into XML format that has hierarchical structure like
YFilter[Diao et al., 2003]. On the other hand, a profile
denotes interest about objects pre-defined by users. After
receiving an event, a system tries to match it with all the
profiles stored in system[Hinze, 2003]. Therefore, the

- 568 -



volume and format of the profiles affect the capacity of
event filtering in the system. LeSubscribe[Pereira et al.,
2001], Siena[Carzaniga, 1998], and Elvin[Segall et al.,
1997] support a profile model that consists of a pair of
(attribute, value). Yeast[Krishnamurthy et al., 1995] and
NiagaraCQ[Chen et al., 2000] support a profile definition
language based on ECA(Event Condition Action)
paradigm. Besides, some XML-based approaches like
[Diao et al., 2003; Tian et al., 2004] define profiles using
XPath expression. Expressing event and profile by a pair
of (attribute, value) is simple but supports limited
expression, so we consider a XMIL-based event model
and an ECA-based profile model to support more power
of expression.

Event filtering 1s based on the semantics of the filtering
engine of the system and profile definition 1s also limited
by the capacity of the filtering engine. Therefore, there
exists an unavoidable trade-off between the profile
definition language and the semantics of filtering engine.
Database-based approaches like NiagaraCQ[Chen et al.,
2000] process profiles as data, so their matchings are
evaluated by join query in DBMS. On the other hand,
because memory-based approaches process a profile as
filter about message, the profile is maintained in main
memory. After generating an in-memory decision
tree[Aguilera et al., 1999] or a FSA(finite state
automaton) per profile to store profiles, the approaches
examine whether an event matches profiles. Database-
based approaches must pay expensive costs to perform
join operation, but the volume of memory in terms of the
number of profile wasn’t largely limited. In memory-
based approaches, the number of profile affects the
volume of memory, so this isn’t suitable to applications
that have a great number of profiles. Considering the
filtering i1s conducted in middleware-level, this paper
employ a database-based filtering approach as well.

3. EVENT & PROFILE MODELLING

Users are interested in changes occurring to object, so an
event-based middleware must support data models that

express context information about objects to satisfy such
demands.

3.1 XML-based Event

An event is context information about an object
occurring in physical environment. Therefore, when
modelling them, it 1s common to model an event using
observers such as RFID reader, temperature sensor,
humidity sensor, and GPS receiver that are capable of
observing environmental attributes or objects. Modelling
focused on objects may limit common and flexible
framework 1n the power of its expression.

Now, we consider XML syntax as a structure to
present event model and explain it using a simple
example in u-logistics area. That is why XML syntax has
flexible structure to express events as messages having
hierarchy and can guarantee interoperability between
heterogeneous platforms. Figure 1 1s the example of a

XML-based event model expressed by BNF(Backus
Nour Form) syntax. BNF syntax 1s convenient to explain
XML-based models because it describes symbols in
“symbol ::= expression”.

Id ::= <String>
Observation ::= <Type><Datetime>(<Status><Tag>|<Position>)
Type ::= 'Detect' | 'Location’
. State ::= 'Loading’ | 'Unloading' | 'Departure’ | "Arrival'

Datetime ::= <StringLiteral>

Tag ::= <EPC> {<EPC>}

EPC ::= <StringLiteral>

- Position ::= <Tag><Latitude><Longitude><Velocity><Course>

. Latitude ::= <Degree><Minute><Second>

Longitude ::= <Degree><Minute><Second>

Velocity ::= <StringLiteral>

Course ::= <StringLiteral>

- Degree ::= <StringLiteral>

Minute ::= <StringLiteral>

- Second ::= <StringLiteral>

Figure 1. XML-based event model

This model assumes that a system collects its location
from trucks fitted with a GPS receiver and also collects
context information about each item from trucks and
warehouses fitted with a RFID reader. Table 1 is listing
the source and type of events that can occur at this time.

Table 1. The source and type of event

L Loading
An ttem Unloading
RFID reader Detect Departure
A truck Arrival
GPS recetver Location -

“Sensor::=<ID><QObservation>", the first line of figure
1, denotes that a sensor has an unique identifier and
observes something from physical environment. The
value of an attribute ‘Type’ of the third line will be
‘Detect’ or ‘Location’ as listed in table 1. If the value of
an attribute ‘Type’ is ‘Detect’, it denotes that the event is
observed by a RFID reader and has one of ‘Loading’,
‘Unloading’, ‘Departure’, or ‘Arrival’ as the value of an
attribute ‘State’. On the other hand, an event observed by
a GPS receiver can have coordinates such as longitude
and attitude as the lower elements.

3.2 ECA-based Profile

A profile pre-defined by users is stored in system and
filtered to newly occurring events at real time.
Therefore, profile must be transformed into specific
format like events as well.

This paper consider ECA paradigm corresponding to a
rule in active database to present profile model. That is
why the paradigm is easy to describe conditions(C) that
must be evaluated and actions(A) that must be performed
as its result, when an event(E) occurs. Figure 2 shows an
ECA-based profile model adaptable to u-logistics area
expressed by BNF syntax.

- 569 -



The first line of this model denotes that each profile is
based on ECA paradigm and when events that
correspond to ‘Detect’ or ‘Location’ occurs, conditions
described in symbol ‘ConditionExpr’ is evaluated. Our
profile model can describes protocol type and destination
of messages to be sent as its result in ‘ActionList’.

Profile ::= 'Event' <EventExpr>

'Condition' < ConditionExpr>

'Action’ <ActionList>
EventExpr ::= 'Location’ | 'Detect’
ConditionExpr ::= <PredicateList> ['AND’ <Operation>}
PredicateList ::= <Predicate> {<LogicalOP> <Predicate>}
Predicate ::= <Literal> <ArithmeticOP> <Literal>
LogicalOP ::= 'AND' | 'OR'
ArithmeticOP ::=">' | '>="| '=" | '<>' | '<' | <=
Operation ::= <DistanceExpr> | <IntervalExpr>
DistanceExpr ::= 'Distance('<NumLiteral> ',' <NumLiteral>

',' <NumLiteral>'")’
IntervalExpr ::= "Interval(' <NumLiterai> ')
ActionList ::= 'Send('<Protocol>,<StringLiteral>')'
{', Send('<Protocol>, <StringLiteral>")'}

Protocol ::= 'SMS' | 'E-mail’
Literal ::= <StringLiteral> | <NumLiteral> | <DateLiteral>
NumLiteral ;:= <FloatlLiteral> | <IntegerLiteral>

“ConditionExpr::=<SelectionList>[<LogicalOp><Fun
ction>]”, the fifth line of figure 2, denotes that the
profile comply with function predicates that need more
complex computation as well as selection predicates such
as relative operators. In this model, there are function
predicates that compute time interval and Euclidean
distance.

4. DESING OF EVENT-BASED MIDDLEWARE

An event-based middleware serves as an engine that
performs filtering between events and profiles. Therefore,
we propose the architecture of the middleware and a
filtering algorithm.

4.1 The architecture of middleware

Generally, most of event-based systems consist of
three modules such as Observer, Filter, and Notifier to
connect suppliers and users of context information[Hinze,
2003]. In addition to three modules, we organize
‘additional modules, EParser and Profile Manager. Figure
3 shows the architecture of the middleware and data flow
between each module.

Observer observes events about objects from physical
USN environment and sends the messages to the system
using TCP/IP socket connection after transforming the
events into XML-based messages.

Filter is the core module of an event-based middleware
that performs filtering between newly occurring events
and pre-defined profiles.

Notifier generates notifications to be sent as the result
of filtering. In our proposed middleware, the results are
dispatched using SMS(Short Message Service) or e-mail
as well as system and are also maintained in Notification
Repository.

Event
Condition
Action

Profile
Manager

Profile

Event
(attribute, value)

(attribute, value)

IObserver]

= A
Event Sources Event Profile Naotification,
Repository Repository Repository
Profiles
Profiles (action) Notificati
An event (conditio (history

Notifier

ResultSet

Figure 3. The architecture of event-based middleware

EParser parses XML-based event messages to a set of
elements and stores them in Event Repository. At this
time, each event is stored in corresponding repository
according to its event type to increase the efficiency of
event filtering.

Profile Manager helps that users easily define profiles
and manages profile. After extracting a set of elements
from profile syntax, this module divides them into action
part and condition part. The condition part is divided into
parts for selection predicate and function predicate again.
Likewise, the predicates of condition part are stored in
corresponding Profile Repository according to its event
type to increase the efficiency of event filtering.

4.2 Two-step event filtering

As mentioned in section 2, event filtering is based on
the semantics of the filtering engine of the system and
profile definition is also limited by the capacity of the
filtering engine. Therefore, a middleware system must
support filtering algorithms that can minimize a trade-off
between the profile definition language and the semantics
of filtering engine. To do this, we propose a filtering
algorithm divided into two steps by separating selection
predicates and function predicates. This technique
intends to reduce filtering costs by separating complex
computations from relatively simple selection predicates.

Moreover, our proposed technique stores the whole
selection predicates as it is. This denotes that because our
proposed technique is based on database operation, 1t can
use operation supported by DBMS without additional
operation like PSoup[Chandrasekaran et al., 2003].
Consequently, the technique is able to support non-
equality and comparison operator as well as equality
operator. The technique gives flexibility in environment
that needs additional operation by considering function
predicates,.

5. IMPLEMENTATION

The proposed middleware was implemented in JDK
1.4 and Oracle 91 under system environment supporting
Pentium 2.0GHz, RAM 1 GBytes, and Windows XP
Professional.

As showed 1n Figure 4, Profile Manager consists of an
attribute panel that can search the attributes of all the
profiles defined by a user in tree format and a profile

- 570 -



panel that can describe a selected profile in detail. The
value of each attribute can define using attribute window
showed at the foot of figure 4. Moreover, we maintain
XML format based on DOM tree so that users can easily
search and update profiles.

Raite Mamsge:
B2 e
: o [y grana
~Pyens
@ G5 Tt
DR A eventppe
o Lecation
9— saril
L@ Y oreEniD
: SRR Lo kN
§ G2 Trapeiond
o Furcan
Do stanrey
- s R LT
Mo
& {8 CapPtioned
DR e aper
T D sene
- i R
" meiznesery
$- 5 Dma) ;
€ £ roceiar
Cor Dy raves
N 7

Action
Event COnditio
S >

b

St Event Ty = Location

Figure 4. Profile Manager

In paring XML-based messages, we used both SAX
parser and DOM. The former was used to parse event
messages because it 1s lighter than a tree-based parser
and the latter was used to help loading profiles on the
profile panel based on GUIL

< ?xml version="1.0" encoding="UTF-8"?>
. <Sensor>
i <ID>01.00G000A.00000B,00000000D</1D>
<0bservation Type="Location">
<Datetime>2006-11-01713:00:00</Datetime>
<Position:>
<Tagx>
<EPC>(11.000000A.000008.00000000F</EPC>
</Tag> P
<l atitude>
<Degree>36</Degree>
<Minute>19</Minute>
<Second>1.5</Second>
< fLatitude:>
<longitude>

Slared varsiore LI gncodngstiso-E8853-10 Ty

SNBT-One” yie s TPatri-RNet"
L4 ™

<Degree>127</Degree>
<Minute>24</Minute:>
<Second>2.07</Second >
<fLongitude:>
<Veiocity>33.1</Velocity>
<Course>120.1</Course>
</Position>
i </Observation>
;< fSensor>

Figure 5 shows the examples of a XML-based event
message and a profile stored in DOM tree format.

6. CONCLUSIONS

With Advance in wireless network and sensor
technology, applications are capable of collecting context
information from intelligent objects at real time.
Therefore, this paper proposed the event-based
middleware that can adapt to varying environment and
that can analyze and support the context information at
real time. First, we presented a XML-based event model
and an ECA-based profile model under USN
environment. Second, we presented the architecture of
the middleware and the filtering algorithm. In the
algorithm, we intended to reduce filtering costs by
separating complex computations from relatively simple
selection predicates. Consequently, by implementing the

proposed middleware, we are able to track and trace
objects at real time.

Currently, works to extend even observers such as
temperature sensor, humidity sensor, and so on and to
include data mining modules for outlier detection and
prediction are ongoing.

REFERENCES

Aguilera, M. K., Strom, R. E., Sturman, D. C., and et al,
1999. Matching Events in a Content-based Subscription
System. In Proc. of PODC.

Carzaniga, A., 1998. Architectures for an Event
Notification Service Scalable to Wide-area Networks.
Ph.D. Thesis, Politecnico di Milano, Dipartimento di
Elettronica ¢ Informazione.

Chandrasekaran, S. and Franklin, M. J., 2003. PSoup: A
System for Streaming Queries over Stream Data. The
VLDB Journal, 12(2), pp.140-156.

Chen, J., 1DeWitt, D., Tian, F., and Wang, Y., 2000.
NiagaraCQ: A scalable continuous query system for
internet databases. In Proc. of ACM SIGMOD, Dallas,
TX.

Diao, Y., Altinel, M., Franklin, M. J., Zhang, H., and
Fischer, P. M., 2003. Path Sharing and Predicate

Evaluation for High-Performance XML Filtering. In Proc.
of ACM TODS.

Hinze, A., 2003. A-MEDIAS: Concept and Design of an
Adaptive Integrating Event Notification Service. Ph.D.
Thesis, Freie Universitt Berlin.

Krishnamurthy, B. and Rosenblum, D. S., 1995. Yeast: A
General Purpose Event-Action System. [EEE Transac-
tions on Software Engineering, 21(10), pp.845-857.

Pereira, J., Fabret, F., Jacobsen, H., and et. al, 2001.
LeSubscribe: Publish and subscribe on the web at
extreme speed. In Proc. of ACM SIGMOD, Santa
Barbara, CA.

Segall, B. and Arnold, D., 1997. Elvin has left the
building: A publish/subscribe notification serivee with
quenching. In Proc. of AUUG, 1997.

Tian, F., Reinwald, B., Pirahesh, H., Mayr, and T.,
Myllymaki, J., 2004. Implementing A Scalable XML
Publish/Subscribe System Using Relational Database
Systems. In Proc. of SIGMOD.

ACKNOWLEDGEMENTS
This research was financially supported by the

Ministry of Commerce, Industry and Energy (MOCIE)
and Korea Industrial Technology Foundation (KOTEF)

- 571 -



through the Human Resource Training Project for
Regional Innovation.

- 572 -



