HIGH-SPEED SOFTWARE FRAME SYNCHRONIZER USING
SSE2 TECHNOLOGY

In-Hoi KOO', Sang-Il Ahn', Tae-Hoon Kim?, Young-Bo Sakong’

Ground System Development Department, Korea Aerospace Research Institute'
freewill@kari.re.kr', siahn@kari.re kr',

SOLETOP Inc. Satellite Image Dept. °
freekid99@soletop.com?, ybsakong@soletop.com®

ABSTRACT: Frame Synchronization is applied to not only digital data transmission for data synchronization between
transmitter and receiver but also data communication with satellite. When satellite image data with high resolution and
mass storage is transmitted, hardware frame synchronizer for real-time processing or software frame synchronizer for
post-processing is used. In case of hardware, processing with high speed is available but data loss may happen for
Search of Frame Synchronization. In case of software, data loss does not happen but speed is relatively slow.

In this paper, Pending Buffer concept was proposed to cope with data loss according to processing status of Frame
Synchronization. Algorithm to process Frame synchronization with high speed using bit threshold search algorithm

with pattern search technique and SIMD is also proposed.

KEY WORDS: CCSDS, Frame Synchronization, SSE2

1. INTRODUCTION

Nowadays the digital communication 1s widely used
between satellite and ground station for TT&C and
payload data downlink application. CCSDS(Consultative
Committee for Space Data Systems) provides some
recommendations for digital communications. For
transmission side in digital communications, Reed-
Solomon or Turbo Encoding, Pseudo-Random Sequence
Generation, Attachment of Attached Sync Marker,
Convolutional Encoding are recommended while
Convolutional Decoding, Frame Synchronization,
Pseudo-Random Sequence Removal, Reed-Solomon or
Turbo Decoding are recommended for receiver side.

To process the massive binary data for meaningful data
extraction, the pre-requisite i1s to perform frame
synchronization via frame synchronizer for real-time
processing or software frame synchronizer for post-
processing

In case of hardware frame synchronizer, small amount
of data loss is normally expected. But software frame
synchronizer shows no data loss but speed limitation 1s
expected.

This paper proposes software frame synchronizer for
high-speed processing. With Intel’s SSE2 technology and
Pattern Search Method, the processing speed in software
approach was dramatically increased and frame data loss
was minimized.

2. FRAME SYNCHRONIZATION & SSE2

2.1 Frame Synchronization

Frame Synchronization means to have special bit
combination to indicate the start or stop of data frame in
continuous bit data stream. With this, the data frame
between TX and RX can be synchronized. Figure 1
shows state transition diagram in Frame Synchronization.

Searched Frame Sync. Marker

Increase
Check Count

Satisfied
Check Count

Run over
Flywheel Count |

-y

Increase @ ~--
Flywheel Count

———— Correct } Not Saved or Transmitted

Incorrect Saved or Transmitted

Figure 1 Frame Synchronization Final State Diagram

Frame Synchronization has 4 kind of states; Search,
Check, Lock, Flywheel State.

2.1.1 Search State

- 522 -

In Search State, the Frame Synchronize Marker
(hereafter, FSM) is searched in input data. Input data is
shifted by bit until to find the FSM. This FSM, in fact,
varies according to modulation method used. All possible
FSM values are compared with input data and detect the
FSM not exceeding the bit error threshold in FSM. When
FSM is successfully searched, the state transition to
Check State is done.

This Search State 1s most time consuming or highest
computational load in 4 States. The rest 3 States like
Check, Lock, Flywheel State moves position by frame
length and just compare and detect the FSM using pre-
defined phase information while both bit level shift and
all FSM pattern are considered in Search State.

In this paper the Search State processing time in frame
synchronization was reduced by adopting the bit
threshold method with Pattern Search, and SSE2.

2.1.2 Check State

Check State detects the FSM by every frame size using
pre-detected FSM in Search State. When the FSM
detection 1s continuously successfully by check count
configured, state transition to Lock State is done but
when fails, state transition to Search State is done.

2.1.3 Lock State

Lock State detects the FSM by every frame size step
like Check State. When FSM is detected, detected frame
data 1s saved or transferred for next processing step.
When FSM detection is failed, Flywheel state is started.

2.1.4 Flywheel State

Flywheel State detects FSM by moving frame size step
in data. When FSM detection fails, the flywheel count
‘value increases by 1. When flywheel count value exceeds
the defined value, the state transition to Search State
begins. When FSM detection is done, Lock state begins.
The frame data during Flywheel state is saved or
transferred to next processing step.

2.2 SSE2 (Streaming SIMD Extensions2)

SIMD 1s the one of three performance enhancement
factor in MMX technology. With the help of this, just
single instruction can be used for iterative loop with
multiple instructions.

Figure 2 shows how SIMS works. .

Instruction

Data Results

Figure 2 SIMD Processing

3. ASSUMPTIONS IN IMPLEMENTATION

Both Bit Pattern value and modulation/demodulation
scheme are thoroughly considered before implementation
of frame synchronization software.

3.1 Bit Pattern

Bit Pattern values recommended by CCSDS were
considered. Table 1 shows possible 5 pattern values.

Table 1 Frame Synchronization Bit Patterns

For ”..ﬁon-tur 0

coded data TACFFCID

For rate-1/2 turbo | 3 4796927289580

coded data

For rate-1/3 b0 | »s1y500CER99OF6CY461BF79C
coded data

For rate-1/4 turbo | 034776C7272895B0

coded data FCBR8O93IZDEDT7T6A4F

For rate-1/6 turbo | 25D5COCE&990F6C9461BF79C
coded data DA2A3F31766F0936B9E40863
In this paper, simple 32bit FSM value of

“1ACFFC1D” without Turbo coding was used.
Figure 3 shows bit pattern in FSM.

First Transmitted Bit Last Transmitted Bit
(Bit 0) (Bit 31)

| |

0001 1010 1100 1111 1111 1100 0001 1101

Figure 3 FSM for non-turbo coded data

3.2 Modulation/Demodulation

Widely used modulation scheme in data transmission
in satellite like MTSAT-1R, MSG, METOP, and
KOMPSAT is QPSK (Quadrature Phase Shift Keying).
QPSK is one of PSK (Phase Shift Keying) and uses 4
phase values to express the 2bits information. 4 phase
means 0°, 90°, 180°, 270°.

In this paper, FSM detection in QPSK modulation was
considered. -

- 523 -

4. FRAME SYNCHRONIZATION
PERFORMANCE ENHANCEMENT

4.1 Pending Buffer Concept

Pending Buffer Concept is used not to lose the data in
Input Data Buffer when new Input Data Buffer data
arrives before finishing the FSM Search State.

Figure 4 shows the useful concept of Pending Buffer
method.

- S: Search State
- C: Check State

Pending Buffer
I AL 1 Frame
Input Data #2

Figure 4 Pending Buffer Method

Input Data#l 1s data under processing while Input
Data#2 1s data for next processing. In case Search State
Frame and Check State Frame are in Input Data#1, these
two frame data are copied and FSM search continues. To
minimize the data loss, this kind of Pending Buffer
concept can be used.

4.2 Pattern Search

Pattern Search is to check if input data is made of same
data bits. When there is no downlink data transmission,
the output data pattern from receiver to serial telemetry
card is “00” or “FF.”

In this case, it is not necessary to find FSM in Search
State.

Bit N ... l

-ttt 1] 0| 0F 1 1} ..] .|

D
P
=
[
d
P
% 3]

Figure 5 Pattern Search

Pattern Search saves first 4bytes data and compare
with 4bytes value after 1bit shift and then if these two
values are same, no data from satellite is assumed.

As shown 1n Figure 5, Search State begins to search
FSM value after data bit value 1. This pattern search
concept 1s useful when no data transmission and data loss
are expected.

4.3 Bits Threshold with SSE2

In Search State, the nearest Hamming distance value
under Bits threshold for 4 possible FSM in QPSK 1s FSM.
In case of no FSM, 1bit shift operation and hamming
distance calculation continue until successful FSM search.
These two activities of bit shift and hamming distance
calculation require huge computational load.

SSE2 was applied to quick comparison between input
data and 4 possible FSM values. With SSE2 technology,
simple one instruction command lead equivalent effects
obtained 4 times individual commands.

Consequently, FSM can be detected by comparing the
bit threshold value and FSM Hamming distance after
calculating.

To apply the SSE2 in bit threshold comparison
sequence, all 4 possible FSM value of “1ACFFCID”
were calculated in advance and saved in XMMI register
and 4 bytes of data in input data buffer was saved in
XMM2 register up to 4 times and finally Hamming
distance calculation between these two XMM were
calculated.

When the Hamming distance is less than the Bits
threshold, we can see FSM detection was successful. But
when there 1s no Hamming distance less than threshold,
the 1bit shift operation is done and the new Hamming
distance calculation and comparison sequence is started
until successful FSM detection.

Using 128-bit XMM register, 4 of phase values are
compared with just 1 instruction command and simply
we can expect 4-times higher processing power from
calculation load’s point a view.

Figure 6 shows an example of bits threshold
calculation using SSE2. |

Phase: 0° 90° 180° 270°
XMM1 Ox1ACFFC1D | Ox4FOAAQ48 | OxB06556B7 | OxE53003E2 —— FSM of Phase
D
XMM2 Ox4FOAAD48 | Ox4FOAAS48 © Ox4FOAAQ48 | Ox4F9AAS48 «— [nput Data
XMMO 0x55555555 0x00000000 | OXFFFFFFFF | OXAAAAAAAA
Hamming Distance: 16 0 32 16

Figure 6 Bits Threshold using SSE2

4-byte value of Input Data Buffer is 0x4F9AA948.
XMMI includes 4 kinds of FSM for different phases.
XMM2 includes 4 times 4-byte data of 0x4F9AA948.
XMMI1 and XMM2 are just exclusive OR-ed and its
results are recorded in XMMO and its hamming distance
was calculated. If value of 2 is configured to bits
threshold, the 4-byte of FSM showing its Hamming
distance under value of 2 is FSM. In Figure 6, phase 1s
90° and FSM value is 0x4F9AA948.

5. RESULT

-524 -

The processing speed for (1) Frame Synchronization
Software with SSE2 and (2) Frame Synchronization
Software without SSE2 were measured. The computer
specification for test was shown 1n Table 2.

CPU Intel Core2 Duo E6700
Memory 2GB
OS Windows XP

Table 2 Test Environment

256-byte of Frame data were used for input test data.

Input file was made of multiple number of 256-byte
frame data.

Input file data was fed into software using

configurable speed from 48.8Mbytes to 488.3Mbytes for
simulating real operational environment.
Test results are shown in Table 3 and Figure?7.

4
50,000 301 62
100,000 292 69
150,000 298 66
200,000 279 70
250,000 300 60
300,000 303 59
350,000 317 57
400,000 310 60
450,000 309 59
500,000 314 . 59
Table 3 Comparison between Applied SSE2 and Not-
apphied SSE2

~ —e—Applied SSE2 ~#— Not-applied SSE2 |

350

300

250

200

1560

100

Data rate(Mbps)

1 3 5 7 9
Data Size{50,000kbytes)

_fi.gure 7 éomparison betWeeri Applied .SSEHZ ahd N‘(.)t-
applied SSE2

From test results, we found the data size per sec,
processing speed, was independant to input data size.

Average speed for SSE2 case reached to about
302.3Mbytes while the speed for non-SSE2 case reached
to 62.1Mbps.

This means SSE2 case shows 4.8 times higher
performance than non-SSE2 case. But this exceeded the
maximum expected performance value of 4. This

discrepancy was investigated to be caused by different
implementation in software realization.

6. CONCLUTION

This paper shows software frame synchronizer
implementation using both SSE2 for high speed
processing and pending buffer concept for no data loss,
which is one of drawback in hardware frame
synchronizer.

The high speed software frame synchronizer with
SSE2 can provide several benefits like expandability and
update which is, in fact, inherent to software.

The scheme in this paper can be applied to not only
satellite communication but also other digital
communications.

7. REFERENCES

[1]CCSDS, ‘TM Synchronization and Channel Coding’, Issue 1,
Sep. 2003

[2]The Software Vectorization Handbook, Aart J.C.Bik

[3]IA-32 Intel® Architecture Software Developer’s Manual
Volume 2A: Instruction Set Reference, N-Z

- 525 -

